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Introduction
In order for the central nervous system (CNS) to function 

normally, the brain should be free from biochemical 
impairments [1,2]. Oxidative stress (OS) is one of the main 
factors that contribute to the biochemical impairment of 
the brain [3]. Due to its high oxygen consumption and lipid 
content, the brain is highly susceptible to OS [4,5]. OS stems 
from an imbalance in the cellular antioxidant response 
system, which can occur as a result of low dietary antioxidant 
consumption [6,7]. In particular, OS denotes an imbalance 

between the creation of reactive oxygen species (ROS) and 
the mitigating effects of antioxidants [5]. In turn, excessive 
cellular oxidant levels are known to reduce antioxidant levels 
[8]. Accordingly, high oxygen consumption is known to cause 
extensive ROS production, with the resulting accumulation of 
ROS contributing to a decline in cellular antioxidants [5,9]. In 
this review, we emphasize the role of ROS in the pathogenesis 
of various neurodegenerative diseases, including Alzheimer’s 
disease (AD), amyotrophic lateral sclerosis (ALS), Huntington’s 
disease (HD), and Parkinson’s disease (PD).

Abstract 

The biological changes caused by oxidative stress (OS) are known to be involved in the etiology 
of neurodegenerative disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, 
Huntington’s disease, and Parkinson’s disease. The brain is particularly vulnerable to OS due to its 
high lipid content and extensive consumption of oxygen. OS processes, particularly the excessive 
production of reactive oxygen species (ROS), play a critical role in how neurodegenerative 
disorders develop. This is evidenced by in vivo studies investigating various biomolecules related 
to OS, such as products of lipid and DNA oxidation. Accordingly, ROS can also cause oxidative-
related damage in neurodegenerative disorders, including dopamine auto-oxidation, mitochondrial 
dysfunction, glial cell activation, α-synuclein aggregation, excessive free iron, and changes in 
calcium signaling. Furthermore, excessive levels of cellular oxidants reduce antioxidant defenses, 
which in turn propagate the cycle of OS. As such, it is increasingly important to determine the 
linkage between a high intake of antioxidants through dietary interventions and a lower risk of 
developing neurodegenerative diseases. Indeed, in addition to modulating the immune system, 
optimal nutritional status is capable of changing various processes of neuroinfl ammation known 
to be involved in the pathogenesis of neurodegeneration. Accordingly, a better understanding of 
the role ROS plays in the etiology of neurodegeneration is needed, along with the identifi cation 
of dietary interventions that may lead to improved therapeutic strategies for both the treatment 
and prevention of neurodegenerative disorders. Therefore, this review presents a comprehensive 
summary of the role of ROS in the pathogenesis of neurodegenerative disorders. In addition, 
nutrients believed to be useful for mitigating and counteracting ROS are discussed. 

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.jnnd.1001026&domain=pdf&date_stamp=2019-11-04


Protection from the Pathogenesis of Neurodegenerative Disorders, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Huntington’s 
Disease, and Parkinson’s Diseases, through the Mitigation of Reactive Oxygen Species

Published: November 04, 2019 149

Antioxidant-based treatments are quickly emerging as an 
encouraging option to delay the progression of neurological 
diseases [10,11]. Indeed, the consumption of antioxidant-rich 
foods has been shown to help reduce the extent of oxidative 
damage caused by free radicals, which are produced during 
various pathological processes, including amyloid-beta (Aβ) 
accumulation, altered antioxidant defenses, inϐlammation, and 
mitochondrial anomalies [12,13]. Ac cordingly, antioxidant 
treatments can facilitate neuroprotection by delaying the 
occurrence or even reversing OS in some cases [14]. In 
addition, diet is known to play a key role in neurodegenerative 
diseases, and the development of irreversible neurocognitive 
decline can be prevented or delayed by the consumption 
of certain nutrients and appropriate dietary modiϐications 
[15,16]. Therefore, nutrients known to be useful in mitigating 
or counteracting ROS in neurodegenerative disorders will 
also be discussed.

Oxidative stress and reactive oxygen species 

Although oxygen is crucial to life and is involved in 
numerous biological processes, including gene transcription 
and signal transduction, it can also have negative impacts on 
biomolecules via ROS and free radicals [7,17]. The adverse 
effects of oxygen can be attributed to its univalent metabolic 
reduction status, which leads to the development of ROS 
[9]. The accumulation of ROS results in a cellular state of 
OS, which is deϐined as an imbalance between a biological 
system’s oxidant and antioxidant levels [18]. This imbalance 
can be caused by excessive levels of ROS or dysfunction in the 
cellular antioxidant system [19,20]. 

Free radicals refer to molecular fragments that contain 
at least one unpaired electron in their respective molecular/
atomic orbitals [21]. These unpaired electron(s) provide free 
radicals with copious amounts of reactivity, with oxygen free 
radicals representing the most signiϐicant category of radical 
species in living organisms [22]. In general, the production of 
oxygen free radicals occurs during reactions associated with 
cellular metabolism [18]. Indeed, during the transduction 
of energy, a limited number of electrons end up leaking 
prematurely to oxygen for the generation of superoxide (O2

•−) 
[23]. In addition, during periods of OS, excessive amounts 
of O2

•− serve to expel iron from iron-containing molecules, 
leading to the generation of the extremely reactive hydroxyl 
radical (•OH) through the Fenton reaction [22]. As a result, the 
formation of additional reactive radicals can occur, including 
the generation of peroxyl radicals [17]. The perhydroxyl 
radical, otherwise known as the hydroperoxyl radical, is 
considered the simplest of such radical. Hydroperoxyl radicals 
can initiate the peroxidation of fatty acids [17]. In addition, 
O2

•− can swiftly react with NO to generate peroxynitrite, which 
is a reactive nitrogen species (RNS) that can inϐlict signiϐicant 
damage to intracellular components [18,24]. In this manner, 
the term ROS is inclusive of •OH, O2

•−, and hydrogen peroxide 
(H2O2) [21,25].

Oxidative damage

ROS can cause serious harm to macromolecules, including 
nucleic acids, lipids, proteins, and polysaccharides [4,6,26]. 
In terms of the CNS, certain properties of neurons make 
them particularly susceptible to the deleterious effects of 
ROS. These properties include a composition of fatty acids 
that is vulnerable to peroxidation, high rates of metabolism, 
heightened concentrations of transition metals, low antioxidant 
levels, and a lower regenerative capacity [22].

In addition, neurons experience intense demands related to 
energy, with the mitochondria both an important source and 
target of ROS [27]. OS is also known to stimulate mitochondrial 
ϐission [28]. This is evidenced by studies wherein H2O2 is added 
onto cultured cerebellar granule neurons, which induces 
mitochondrial fragmentation within an hour of treatment [29].

OS can also lead to alterations in the structure of proteins, 
and impaired protein structures can further exacerbate 
oxidative damage [9]. Indeed, ROS causes protein oxidization 
and modiϐied protein structures that easily aggregate and 
dimerize [30]. These functionally and structurally abnormal 
oxidized proteins then accumulate within the cytoplasm of 
neurons in the form of Aß plaques and tau neural ϐibrillary 
tangles (NFT) [31]. Aß plaques themselves are also known to be 
responsible for the formation of ROS, resulting in a continuous 
cycle of OS [30]. In addition, a growing body of evidence has 
demonstrated that ROS causes oxidative damage to lipids and 
DNA, which leads to various cellular dysfunctions [4,32,33]. 
In summary, oxidative damage is inclusive of dopamine auto-
oxidation, mitochondrial dysfunction, glial cell activation, 
α-synuclein aggregation, changes in calcium signaling, and 
excessive free iron [34–36].

Oxidative stress and neurodegenerative disorders

Sustained oxidative stress, in particular, ROS may also 
trigger abnormalities in mitochondrial function, impairment 
of the DNA repair system, and cellular damage, all of which 
are considered to play decisive roles in accelerating the aging 
process and the development of neurodegenerative disorders 
[37,38]. Indeed, a large body of evidence exists underscoring 
the role of ROS in several human disease states, including 
neurodegenerative disorders [39-42]. Therefore, continued 
efforts are critical to identifying agents that could be potentially 
useful in the treatment and prevention of neurodegenerative 
diseases [7,43]. Many studies have observed the association 
between the accumulation of ROS and the pathogenesis of 
neurodegenerative disorders, including Alzheimer’s disease, 
amyotrophic lateral sclerosis, Huntington’s disease, and 
Parkinson’s diseases [39-41,44]. In brief, Alzheimer’s disease 
is a neurodegenerative disorder that is characterized by the 
progressive loss of memory and the development of dementia 
[45,46], whereas Huntington’s disease refers to a hereditary 
disorder of the CNS [40,42]. The symptoms of Huntington’s 
disease include cognitive impairments, movement disorders, 
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and psychiatric disorders [47]. Amyotrophic lateral sclerosis 
is a serious neuromuscular disorder characterized by the loss 
of motor neurons and signiϐicant skeletal muscle wasting over 
a short period of time [48]. 

In contrast, Parkinson’s disease is considered a long-
term, progressive age-related neurodegenerative disease 
characterized by motor dysfunction [49,50].

Alzheimer’s Disease (AD)

Alzheimer disease is a brain-speciϐic disorder characterized 
by the presence of tau NFT, neural inϐlammation, and Aβ 
plaques [51-53]. These pathologies cause neuronal death and 
concomitant clinical symptoms, such as confusion, impaired 
cognitive function, and memory loss [54-56]. One of the key 
characteristics of AD is the substantial and progressive erosion 
of neurons in the cortex [57]. Indeed, maximal degeneration 
takes place in the cortex and hippocampus, which leads to 
deϐiciencies in both learning and memory [58]. Typically, 
AD symptoms commence with mild amnesia and confusion, 
eventually leading to radical changes in the personality of the 
afϐlicted individual [59]. Other AD signs include vision/spatial 
abnormalities, poor word recall, and deϐicits in judgment or 
reasoning [59].

Alzheimer’s disease and oxidative stress

An imbalance between ROS production and the activities of 
enzymes responsible for ROS scavenging results in increased 
oxidative damage in AD patients [54]. Numerous studies have 
demonstrated that OS and ROS have a signiϐicant role in AD 
by causing deleterious effects to proteins and other important 
biomolecules [20,60]. ROS oxidize β-amyloid and tau, and the 
resulting oxidative imbalance leads to further neuronal damage 

in AD patients [61,62]. These oxidized proteins accumulate in 
the cytoplasm of neurons to create Aβ plaques, which serve to 
propagate the cycle of oxidative damage via increasing ROS 
levels [63,64]. Another contribution of  OS to AD is through 
mitochondrial dysfunction caused by the accumulation 
of the Aβ aggregates [54]. In this regard, mitochondrial 
dysfunction is a key protagonist in the pathogenesis of AD 
[12,65,66]. In particular, mitochondrial dysfunction is caused 
by a number of factors, including oxidative stress from the 
generation of ROS, membrane damage, mitochondrial damage 
(DNA-related), the destabilization of ionic gradients, and 
interactions with Aβ, which is regarded as a toxic protein 
[67,68]. According to emerging evidence, there may be an 
association between tau pathology and OS [69,70]. Indeed, 
cells containing overexpressed tau proteins appear to be 
particularly vulnerable to OS [71]. In summary, amyloid 
plaque, Tau aggregation, excessive generation of ROS, 
mitochondrial dysfunction, accumulation of Iron and impaired 
calcium homeostasis, and poor antioxidant status generates 
oxidative stress, particularly ROS in AD. Enhanced oxidative 
alterations to β-amyloid protein lead to protein misfolding 
and protein aggregation which in turn causes exacerbation of 
neurodegeneration and death of neuronal cells in AD [22]. The 
destruction of the cells leads to brain atrophy in AD.

Alzheimer’s disease and nutrients 

Bioactive nutrients are believed to be some of the few 
factors that are effective in AD (Table 1) [72]. A growing body of 
evidence indicates that a wholesome dietary plan consisting of 
ϐish, fruit, and vegetables is important for optimizing cognition 
and reducing the risk of AD [73]. In particular, reduced levels 
of fat-soluble vitamins, such as vitamins A, D, E, and K, may 
be responsible for causing a cognitive decline among AD 

Table 1: Summary of nutraceuticals suggested for prevention and therapy of neurodegenerative diseases.
Nutraceuticals Benefi cial Effects Mechanism Support for Diseases

Vitamin E Antioxidant,
Neuroprotection

Vitamin E is a scavenger of several ROS and serves to reduce their reactivity and toxicity. It offers 
protection from the propagative damage of ROS by inhibiting the oxidative modifi cation of lipoproteins

AD [74-79,82-86]
PD [175–177,79]

ALS [193,217,218]

Vitamin C Antioxidant,
Neuroprotection

Vitamin C is an excellent antioxidant, suitable in reducing ROS levels, lipid peroxidation, and oxidative 
stress. It is also useful in regenerating other antioxidants.

AD [81,82,75,77,79]
PD [166-168]
ALS [213,214]

Vitamin D Antioxidant Neuroprotection Vitamin D prevent oxidative stress, lower the production of free radicals, and reduce neurotoxicity 
through the enhancement of autophagy signaling pathways

AD [74-78,30,16,80]
PD [157-159,169-174]

ALS [215,216]
Vitamin A Antioxidan Vitamin A prevent the formation of Aβ plaques AD [16,30,74-78]

Vitamin B Antioxidant
Neuroprotection Vitamin B perform antioxidant and neuroprotective functions 

AD [88-90]
PD [157-159,162-165]

HD [105]

Curcumin
Antioxidant

Anti-infl ammatory
Neuroprotection

Curcumin is a scavenger of free radicals and reduces mitochondrial disfunction. AD [100,101]

Omega−3
fatty acids

Antioxidant
Anti-infl ammatory Omega-3 fatty acids reduce ROS formation acting as free radical scavengers.  

AD [92-94]
PD [175,180-182]

ALS [193,217]

Flavonoids
Antioxidant

Anti-infl ammatory
Neuroprotection

Neuromodulation

Flavonoids scavenge ROS and acts as antioxidative, antiapoptotic, and anti-infl ammatory agent. AD [95-97].
PD [97,185-188]

Polyphenols
Antioxidant, 

Anti-infl ammatory, 
Anti-apoptotic

Polyphenols reduces the levels of Aβ and offers antioxidant, anti-infl ammatory, mitochondrial 
protective, and anti-apoptotic activities.

AD [95-97]
HD [42,43,95, 125]

PD [95,183,184]
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patients [30,74-76]. Antioxidants that may help treat AD as 
adjuvants to traditional therapies include vitamins A, C, and 
E [16,30,75,77]. Vitamin A has been reported to prevent the 
formation of Aβ plaques [78]. In addition, vitamins C and E 
have also proven to be beneϐicial in delaying or preventing 
the progression to irreversible neurocognitive decline [79]. 
Furthermore, higher consumption of vitamin D is associated 
with a lower risk of AD [80]. 

Studies have suggested that vitamin C may be able to halt 
the development of AD due to its role in mitigating various 
processes associated with AD pathology [81]. Both in vitro 
and in vivo studies have reported that vitamin C helps reduce 
OS by impeding Aß oligomerization [11,15]. Damage to 
the brain leads to a decline in antioxidants and important 
enzymes, including vitamin C and superoxide dismutase 
(SOD), which neutralizes O2

•− radicals [81]. Vitamin C itself can 
help increase SOD levels and decrease levels of associated OS 
[81]. Indeed, researchers have postulated that even a normal 
vitamin C intake through diet can exert a neuroprotective 
effect among AD patients [30]. A study of 4,740 participants 
showed that an intake of vitamins E and C for at least three 
years reduced the risk of developing AD [82]. Vitamin E is 
considered to be an important antioxidant micronutrient, 
and studies have shown that vitamin E can safeguard cells 
from oxidative damage [75,83]. In addition, vitamin E offers 
protection from the propagative damage of ROS by inhibiting 
the oxidative modiϐication of lipoproteins [84,85]. Indeed, 
a study comprising 904 patients with AD and 1,153 healthy 
older controls conϐirmed that serum vitamin E levels were 
lower in the AD patients compared with the controls [86]. In 
this regard, an increased intake of quality dairy, fresh fruit, 
vegetables, ϐish, and whole grains, along with the reduced 
consumption of fried potatoes, sweets, and processed meat, 
may provide an efϐicacious nutrient combination and offer 
protection against AD [84,87]. 

In addition, various B vitamins, including folate (or B9), 
B6, and B12, have been reported to have a positive impact on 
AD patients in terms of their inϐluence on the metabolism of 
homocysteine, which is a sulfur amino acid source derived 
from the metabolism of methionine [88-90]. In addition, 
magnesium, ino sitol, choline, B1, isoϐlavones, and anthocyanins 
may help prevent the development of AD [91]. In addition, 
dietary omega-3 fatty acids are also known to improve the 
functioning of the brain in a similar manner [92,93]. A study 
comprising 815 participants between the ages of 65 and 
94 found a 60% lower risk of developing AD in those who 
consumed ϐish at least once per week [94].

A growing body of evidence suggests that polyphenols and 
ϐlavonoids scavenge RNS and ROS, thus playing an important 
beneϐicial role in patients suffering from degenerative diseases 
related to aging [95-97]. Polyphenols are key antioxidant 
substances found in abundant quantities in various fruits, 
such as grapes, blueberries, and tomatoes, vegetables, olive 

oil, spices, herbs, and certain beverages such as tea and coffee 
[95,96,98,99]. In AD, polyphenols may reduce the levels of 
Aβ [95,96]. Curcumin is derived from the turmeric root and 
is considered a beneϐicial polyphenol with strong antioxidant 
properties; reports have indicated that curcumin may have 
beneϐits in several degenerative diseases relating to aging, 
such as AD [100,101]. Since polyphenols and ϐlavonoids 
are found in fruits and vegetables, the daily consumption of 
a healthy diet is considered a useful preventive approach 
against neurodegenerative disorders [102]. Similarly, nuts, 
including walnuts, almonds, and hazelnuts, offer essential 
phytochemicals and micronutrients/macronutrients, which 
can have a positive impact on AD pathogenesis, including 
processes involving tau phosphorylation, amyloidogenesis, 
cholinergic pathways, and OS [103].

Huntington’s Disease (HD) 

Huntington’s disease is a genetic neurodegenerative 
disorder characterized by the selective degeneration of 
neurons. This degeneration results in progressive disabilities, 
including motor dysfunction and both cognitive and 
psychiatric deϐiciencies [104-106]. HD is associated with 
polyglutamine-expansion; thus, the disease primarily impacts 
the cerebral cortex and striatum [107,108]. Key symptoms 
include motor dysfunction, progressive cognitive decline, and 
psychiatric disturbances [109,110]. Primarily, HD is known to 
impact the corpus striatum and is characterized by cognitive/
motor deϐicits and unusual involuntary movements [111,112].

Huntington’s disease and oxidative stress

Huntington’s disease is caused by a repeat expansion 
of cytosine–adenine–guanine (CAG) in the huntingtin gene 
[105,113,114]. The mutant huntingtin protein (mHTT) leads to 
neuronal dysfunction before ultimately causing cell death due 
to excitotoxicity, transcriptional deϐiciencies, inϐlammation, 
oxidative damage, mitochondrial dysfunction, and apoptosis 
[112,115,116]. Excessive mHTT accumulation is responsible 
for causing an unusually high production of ROS, along with 
the concomitant mitochondrial OS, in neurons [40,117]. 
According to several reports, neuronal degeneration mediated 
by mitochondrial dysfunction and OS is a major contributing 
factor in HD [107,118]. In addition, OS promulgates mHTT 
aggregation and cell death by replicating proteasomal 
abnormalities [119,120]. The heightened production of free 
radicals also inhibits the production of energy and proper 
mitochondrial function. Similarly, impairments in metabolism 
have been shown to cause excitotoxic damage [121]. In HD, 
oxidative damage has been observed in proteins, lipids, and 
DNA [122]. In this regard, the inadequate repair of damaged 
DNA is believed to be a primary contributing factor to the 
repeat expansion of CAG [123]. In addition, HD patients have 
been reported to have increased levels of OS markers, along 
with a decrease in antioxidant status compared with healthy 
participants [124]. In summary, accumulation of mHTT protein, 
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impairment in the electron transport chain and mitochondrial 
dysfunction, imbalance in oxidant-antioxidant status, higher 
lipid concentration and high energy requirement, and poor 
antioxidant status generates oxidative stress, particularly ROS 
in HD. Enhanced oxidative alterations to mHTT protein leads 
to protein misfolding and protein aggregation which in turn 
causes exacerbation of neurodegeneration in HD.

Huntington’s disease and nutrients

According to various studies (Table 1), vitamin B5 deϐiciency 
may cause dementia and neurodegeneration in HD patients, and 
treatments that include B5 may help prevent the progression of 
HD [105]. Plant-derived polyphenols are ubiquitous compounds 
characterized by numerous pharmacological properties, 
including antioxidant, anti-inϐlammatory, mitochondrial 
protective, and anti-apoptotic activities [95,42]. Polyphenols 
are also known to improve cognitive function and delay and/
or prevent the onset of certain neurodegenerative diseases, 
including HD [43,125]. In rodents, olive oil has been shown to 
decrease oxidative damage in 3-nitropropionic acid-induced 
HD cases [126]. Studies showed that both hydroxytyrosol 
and extra virgin olive oil acted as robust brain antioxidants 
[127]. In addition, other studies have reported that green 
tea plays a role in preventing early-stage events associated 
with HD pathogenesis, including Huntington’s misfolding 
[128,129]. Similarly, the combination of ϐish oil and quercetin 
has been reported to offer protection against HD induced by 
3-nitropropionic acid [130].

Parkinson’s disease

Parkinson’s disease is a progressiv e disorder characterized 
by various motor-related symptoms, including slow 
movements, body tremors, and rigidity [131,132]. In general, 
motor symptoms related to PD ϐirst manifest after the death of 
over 60% of dopaminergic neurons within the brain [133,134]. 
Indeed, the pathological hallmarks of PD include the generation 
of Lewy bodies and the erosion of dopaminergic neurons in 
the substantia nigra pars compacta [135-137]. According 
to a growing body of evidence, neuroinϐlammation plays a 
signiϐicant role in the pathogenesis of PD, which could serve as 
a target of neuroprotection [138,139]. Products of dopamine 
quinones and oxidation also reportedly lead to PD-related 
neurodegeneration [140,141]. Various exogenous causes have 
been implicated in the etiology of PD, including the excessive 
use of pesticides/herbicides, exposure to carbon disulϐide and 
monoxide, plant-derived toxins, and both viral and bacterial 
infections [20]. In addition, aging appears to be a factor, 
ceasing the normal cellular processes which in turn leading 
to the increased degeneration of dopaminergic neurons [142].

Parkinson’s disease and oxidative stress 

Oxidative stress and mitochondrial dysfunction play 
an important role in exacerbating PD [143-146]. Indeed, 
cellular inϐlammation and stress are known to cause reactive 
astrogliosis, which in turn leads to the generation of astrocytic 

ROS [147]. In this context, ROS are regarded as important 
modulators of PD [148,149]. At the same time, dopaminergic 
neurons of the substantia nigra are especially susceptible 
to processes of degeneration in PD [141,150]. In addition, 
increased levels of oxidized proteins and lipids have been 
observed in PD patients [19]. It is notable that among the 
organelles capable of generating ROS, mitochondria account 
for over 90% of all ROS production [151]. During their lifespan, 
dopamine neurons are constantly exposed to RNS and ROS 
from metabolic processes localized to the cytosol [152-
154]. Being a comparatively unstable molecule, dopamine 
itself can produce ROS by undergoing auto-oxidation within 
the nigrostriatal tract system, indicating that oxidation may 
progress with aging [155,156]. In summary, accumulation 
of alpha-synuclein protein, impaired respiratory chain and 
somatic mitochondrial DNA mutations, iron accumulation, 
enhanced dopamine metabolism, increase in malondialdehyde 
and hydroperoxides in the substantia nigra, hydroxyl 
radical accumulation, and poor antioxidant status generates 
oxidative stress, particularly ROS in PD. Enhanced oxidative 
alterations to α-synuclein protein lead to protein misfolding 
and protein aggregation which in turn causes exacerbation 
of neurodegeneration and destruction of neuronal cells and 
death of dopaminergic neurons in PD [22]. The destruction 
of the cells and the reduced dopaminergic transmission in 
the substantia nigra leads to progressive loss of muscular co-
ordination and balance in PD.

Parkinson’s disease and nutrients

It has been reported that PD can be effectively managed 
with nutritional supplementation, particularly dietary 
interventions involving foods containing vitamins B and 
D, as well as coenzyme Q and omega-3 fatty acids (Table 1) 
[157-159]. Foods that have been established to reduce the 
progression rate of PD include fresh fruits and vegetables, nuts 
and seeds, olive oil, ϐish (non-fried), spices, fresh herbs, and 
coconut oil [160]. In contrast, foods associated with faster PD 
progression include fried foods, both non-diet and diet soda, 
ice cream, beef, cheese, canned fruits/vegetables, and yogurt 
[160]. Unlike iron supplements, nutritional supplements 
containing coenzyme Q10 and ϐish oil have been linked to a 
lower progression of PD [160]. In addition, tea intake has been 
linked to a lower risk of developing PD. Indeed, it has been 
reported that people who consume at least one cup of black 
tea daily have a decreased risk of developing PD [161].

A deϐiciency in vitamin B12 is also known to be a key factor 
that causes comorbidity among PD patients owing to the 
heightened rate of bacterial overgrowth that occurs in the 
intestines of 25%–54% of PD patients [90,162,163]. Notably, 
vitamin B12 is primarily sourced from animals [98]. In one 
study of 72 PD patients, with a follow-up period of nine years, 
higher consumption of vitamin B6 was linked to a considerably 
decreased risk of PD progression [88]. Furthermore, the B 
vitamin, niacin (vitamin B3), is known to lower oxidative stress. 
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Given that PD physiopathology is associated with a failure of 
cellular energy and mitochondrial dysfunction, niacin may 
perform antioxidant and neuroprotective functions at low 
doses owing to its role in several metabolic pathways [164,165]. 
Sources of B vitamins include whole grains, legumes, bananas, 
meat, and potatoes [98]. 

Vitamin C also plays a key role in decreasing ROS and 
lipid peroxidation, in addition to being instrumental for the 
regeneration of other key antioxidants [166,167]. A study 
comprising 1,000 PD patients found that the intake of vitamin 
C decreased the risk of PD progression [168]. Primary sources 
of vitamin C include fruits, paprika, citrus foods, and vegetables 
[98]. In addition, multiple clinical studies have reported that 
concentrations of serum vitamin D are negatively correlated 
with the severity and risk of PD [169,170]. Vitamin D3 is known 
to prevent oxidative stress, lower the production of free 
radicals, and reduce neurotoxicity through the enhancement 
of autophagy signaling pathways, thereby having a positive 
effect in PD patients [171-173]. One study consisting of 2,866 
patients with Parkinson’s disease and 2,734 healthy controls 
observed that increased serum vitamin D levels reduced the 
severity of progression of PD [174]. A regular intake of foods 
rich in vitamin E may also defer the development or even 
lower the risk of PD [175]. In fact, vitamin E is a scavenger of 
several ROS and serves to reduce their reactivity and toxicity 
[79,175-177]. A study that administered a combination of 
vitamins C and E to patients in the early stages of PD found 
that the vitamin regimen slowed the progression of PD [178].

Increased polyunsaturated fatty acids (PUFAs) consumption 
is inversely correlated with PD [179]. Omega-3 fatty acids 
act as free radical scavengers and reduce ROS formation 
[180]. They also decrease the chemotaxis of monocytes and 
neutrophils and curb the formation of pro-inϐlammatory 
cytokines [175,181,182]. A cohort study consisting of 5,000 
individuals found that a high intake of omega-3 fatty acids 
reduced the risk of PD [180]. The sources of Omega-3 fatty 
acids include ϐish oils, cold-water ϐish, ϐlaxseed oil, walnuts, 
edible seeds, and other dietary supplements [98]. On the other 
hand, polyphenols demonstrate powerful anti-inϐlammatory 
and antioxidant properties [95]. Considering the role of 
OS and inϐlammation in the onset and progression of PD, it 
has been found that dietary polyphenols such as catechins, 
anthocyanins, resveratrol, theaϐlavins, and curcumin may 
offer signiϐicant therapeutic beneϐit in PD [183,184]. Owing 
to their biological impacts, including as antioxidative, 
antiapoptotic, and anti-inϐlammatory agents, as well as their 
lipid-reducing traits, ϐlavonoids may impart a wide range of 
health beneϐits, including diminished risk of PD [97,185-187]. 
A study of 130,000 participants showed that a high intake of 
ϐlavonoids reduced the risk of PD [188]. Common ϐlavonoid 
sources include berries, onions, parsley, all citrus fruits, dark 
chocolate, red wine, green/black tea, and Ginkgo biloba [189].

In addition, several preclinical studies involving animals 

have demonstrated the advantages of probiotics in preventing 
and treating disorders of the CNS [190]. A study comprising 60 
PD patients that were administered a daily probiotic for 12 weeks 
found that the probiotic reduced the risk of PD progression 
[191]. In this regard, supplementation, involving probiotics, has 
shown a wide range of positive impacts on metabolic proϐiles/
symptoms, thereby having the potential to signiϐicantly beneϐit 
PD patients [191]. Foods with high prebiotic content include 
artichokes, bamboo shoots, asparagus, bananas, barley, black 
pepper, chicory coffee, dark beets, chocolate, broccoli, fennel 
root, endive, mustard greens, Jerusalem artichokes, ginger, 
jicama, tomatoes, yacón, leeks, and legumes [98].

Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis is an irrev ersible 
neurodegenerative disorder that quickly progresses and 
causes the erosion of motor neurons not only within the brain 
but also throughout the spinal cord [192-194]. In addition, 
ALS is accompanied by the reduction and dysfunction of upper 
motor neurons [48,195,196]. ALS leads to the progressive but 
selective erosion of spinal, bulbar, and cortical motoneurons, 
which results in speech loss, progressive paralysis, difϐiculty in 
swallowing, and several respiratory malfunctions. Ultimately, 
ALS is fatal, and the time to death is related to the rate of 
progression [197,198]. As with other neurodegenerative 
disorders, neuroinϐlammation is frequently found in ALS 
[199]. ALS is characterized by inϐlammation related to 
astroglia/microglia, macrophages, and pro-inϐlammatory 
peripheral lymphocytes [200]. Evidence has shown that 
several genetic mutations are associated with ALS and amplify 
this neuroinϐlammation, which is evidence for immune 
dysregulation in ALS pathogenesis [199,201].

ALS and oxidative stress

It has been disc overed that ALS patients have mutations 
in the gene encoding the antioxidant enzyme superoxide 
dismutase 1 (SOD1) [202]. Mutant SOD1 leads to aggregation 
in motor neurons within the CNS [193]. Other causes include 
oxidative stress, neuroinϐlammation, glutamate excitotoxicity, 
changes in neuroϐilaments, mitochondrial degeneration and 
damage, protein aggregation, apoptosis, and deϐiciencies 
in factors related to growth [46,203-205]. Owing to the 
accumulation of dysfunctional mitochondria within the 
motor neurons impacted by the sporadic and genetic types 
of ALS, there is a clear indication that a failure to maintain 
healthy mitochondria exacerbates ALS [206,207]. Among ALS 
patients, OS has been linked to the degeneration of skeletal 
muscles and motor neurons [208,209]. Indeed, in conjunction 
with mitochondrial dysfunction, ROS is considered a major 
cause of ALS. It is also noteworthy that OS not only raises 
overall RNS/ROS formation but also impacts the structure and 
conformation of various proteins, which then causes abnormal 
protein accumulation [210]. Oxidative stress biomarkers in 
CNS regions of paramount signiϐicance in the context of ALS 
are also indicative of their involvement in the degeneration 
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of motor neurons [211]. Mitochondrial dysfunction associated 
with ALS is known to manifest in numerous ways, including 
as defective oxidative phosphorylation, ROS production, 
deϐicient calcium buffering, and problematic mitochondria 
dynamics [211]. Moreover, barring the issue of RNA toxicity, 
mitochondrial dysfunction appears to be correlated with 
all mechanisms of the toxicity characterizing ALS, such as 
deϐicient axonal transport, the erosion of homeostasis, and 
excitotoxicity [211]. Heightened levels of damage associated 
with ROS and RNS have been observed in ALS [210]. In 
addition, increased levels of ROS have been reported in the 
lymphoblasts of familial cases of ALS [212]. In summary, 
glutamate-induced excitotoxicity, mitochondrial dysfunction 
generates oxidative stress, particularly ROS in ALS. Enhanced 
oxidative alterations to SOD 1 protein lead to protein misfolding 
and protein degradation which in turn causes exacerbation 
of neurodegeneration in ALS [22]. The destruction of motor 
neurons leads to the muscle weakness in ALS.

ALS and nutrients

A higher intake of vegetables and fruits is negatively 
correlated with ALS [213]. In addition to being an efϐicacious 
scavenger of free radicals, vitamin C also modulates the 
metabolism of neurons by lowering the consumption of 
glucose during glutamatergic synaptic activity, while also 
fostering an increase of neuronal lactate, which is consistent 
with the reduced ratio of lactate to pyruvate observed in ALS 
patients (Table 1) [214]. A study in rodents administered with 
vitamin C before and after the onset of ALS found that the 
former regimen resulted in longer survival by 62% [215]. It 
has also been demonstrated that vitamin D can affect several 
facets of the pathology of ALS [216], including reducing the 
expression of biomarkers linked with neuroinϐlammation and 
OS [217].

Fiber, vitamin E, and omega-3 fatty acids can also potentially 
impart lasting beneϐits in ALS [193]. A study comprising 132 
ALS patients and 220 healthy controls showed that high 
consumption of vitamin E, in conjunction with omega-3 fatty 
acids, reduced the risk of developing ALS by as much as 50%–
60% [218]. Indeed, the results another study indicated that 
the participants who consumed vitamin E supplements had a 
signiϐicantly lower risk of death caused by ALS than those who 
did not, thus underscoring the potential efϐicacy of vitamin E 
in the prevention of ALS [219]. In addition, zinc is also known 
to perform key functions in various pathological mechanisms 
traditionally correlated with ALS [220]. Cannabinoids have 
also been postulated as therapeutic options for ALS owing to 
their anti-inϐlammatory, antioxidant, and anti-excitotoxicity 
properties [221,222]. Cannabinoid sources include ϐlax seeds, 
hemp oil, seeds, eggs, and anchovies [223]. 

Neurodegenerative disorders and nutraceuticals 

The following table 1 displays the beneϐicial effects and the 
mechanisms of the nutraceuticals suggested for prevention 
and treatment of neurodegenerative diseases.

Conclusion
Although major neurodegenerative disorders such as 

AD, HD, PD, and ALS are linked to multiple pathophysiologic 
processes as well as etiologies, it is evident that OS and, in 
particular, the production of ROS, are signiϐicant factors. In 
general, a proper balance between antioxidants and ROS 
is necessary for cells to function properly, and OS has been 
attributed to neuroinϐlammation, dopamine degeneration, 
and mitochondria dysfunction. Meanwhile, the onset of OS 
generates ROS, which can have damaging impacts on the 
neurons within the brain, resulting in neurodegeneration. 
Similarly, mitochondrial dysfunction has been found to 
exacerbate the imbalance between antioxidants and ROS 
within the cellular environment. The excess ROS production 
leads to neurodegenerative disorders. Enhanced oxidative 
alterations to β-amyloid proteins in AD, α-synuclein proteins 
in PD, mHTT proteins in HD, and SOD 1 proteins in ALS lead 
to protein misfolding and protein aggregation which in turn 
causes exacerbation of neurodegeneration and destruction of 
neuronal cells. Given that OS can begin at a young age, the role of 
dietary intervention assumes great importance in preventing 
or deferring the advancement of neurodegenerative disorders. 
Indeed, increasing evidence has shown that antioxidants 
constitute a promising approach to prevent the occurrence 
of neurodegenerative diseases. Intake of balanced nutrients 
and efϐicient antioxidants may also facilitate the treatment 
strategies for patients of Alzheimer’s disease, Huntington’s 
disease, Parkinson’s disease, Amyotrophic lateral sclerosis 
diseases, and other neurodegenerative diseases.
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