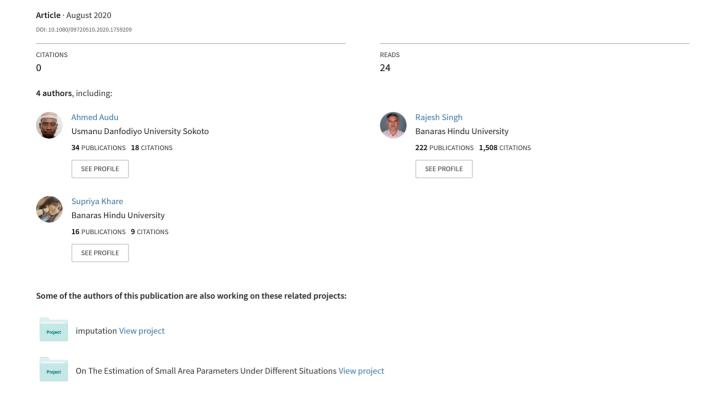
Journal of Statistics and Management Systems ISSN: (Print) (Almost unbiased estimators for population mean in the presence of non-response and measurement error Almost unbiased es...





### **Journal of Statistics and Management Systems**



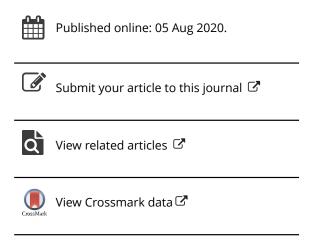
ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsms20

# Almost unbiased estimators for population mean in the presence of non-response and measurement error

Ahmed Audu, Rajesh Singh, Supriya Khare & N. S. Dauran

To cite this article: Ahmed Audu, Rajesh Singh, Supriya Khare & N. S. Dauran (2020): Almost unbiased estimators for population mean in the presence of non-response and measurement error, Journal of Statistics and Management Systems, DOI: 10.1080/09720510.2020.1759209

To link to this article: <a href="https://doi.org/10.1080/09720510.2020.1759209">https://doi.org/10.1080/09720510.2020.1759209</a>



#### Journal of Statistics & Management Systems

ISSN 0972-0510 (Print), ISSN 2169-0014 (Online) DOI: 10.1080/09720510.2020.1759209



## Almost unbiased estimators for population mean in the presence of non-response and measurement error

Ahmed Audu<sup>§</sup>
Department of Mathematics
Usmanu Danfodiyo University
Sokoto
Nigeria

Rajesh Singh<sup>†</sup>
Supriya Khare\*
Department of Statistics
Banaras Hindu University
Varanasi 221005
Uttar Pradesh
India

N. S. Dauran <sup>‡</sup>
Department of Mathematics
Usmanu Danfodiyo University
Sokoto
Nigeria

#### Abstract

In this paper, we have proposed three classes of almost unbiased estimators for population mean under simultaneous presence of measurement and non-response error. Asymptotic properties such as Bias and MSE for the proposed classes of estimators are obtained. Numerical illustration in support of theoretical results is also given on two real data sets and a simulated data set using R. Results indicate the superiority of proposed classes of estimators over existing estimators.

Subject Classification: 62D05.

Keywords: Measurement error, Non-response, Bias, Precision, Almost unbiased.

<sup>§</sup>E-mail: Ahmed.audu@udusok.edu.ng
†E-mail: rsinghstat@gmail.com

<sup>\*</sup>E-mail: supriya.khare@bhu.ac.in (Corresponding Author)

<sup>&</sup>lt;sup>‡</sup>E-mail: sani.nasiru@udusok.edu.ng

#### 1. Introduction

It is suitably ascertained that proper use of auxiliary or prior information yields a more precise estimate of population parameter(s). Ratio, Product and Regression methods of estimation are to be noted in this context. Keeping above fact in mind many authors have suggested estimators for population parameter(s) including [1], [2] and [3] etc. In Statistical analysis it is usually presumed that that all the observations are measured correctly. However, in practical situations this assumption is somewhat violated and the true value of the variable cannot be recorded. In such cases there is always some associated error with the variable that leads to deviation between true and observed values of the variable. Such deviations are termed as measurement error. Several authors including [4], [5], [6], [7] and [8] considered estimation in the presence of measurement error. Another type of non-sampling error that generally creeps in sampling surveys includes non-response error that is unavoidable. [9] were the first to deal with the problem of non-response by using technique of subsampling from non-respondents. Non-response may generally arise due to non-availability of respondents, refusal to respond, presence of hard core respondants or due to non-understanding of the particular question. The estimation procedures under non-response are considered in literature by many authors for instance [10] [11],[12] etc. In Survey Sampling, situation may arise that both of these errors occur simultaneously. Simultaneous estimation of measurement and non response error for finite population mean is considered by authors namely [13], [14], and [15]. Recently, [16] and [17] defined estimation of finite population mean under both measurement error and non-response error.

#### 1.1 Some Existing Estimators in Literature

Let Y and X be study and auxiliary variables of population of interest with units  $\Omega(U_1, U_2, ..., U_N)$  from which sample of size n is selected using SRSWOR scheme. Consider two non-overlapping subgroups from  $\Omega$  in which units  $Y_{(1)i}$ ,  $i=1,2,...,N_1$  from N is considered as responding group  $G_R$  and units  $Y_{(2)i}$ ,  $i=1,2,...,N_2$  as non-responding group  $G_{NR}$  such that  $\sum_{j=1}^2 N_j = N$ . Let  $n_1$  and  $n_2$  be sample sizes from  $G_R$  with units  $y_{1i}$ ,  $i=1,2,...,n_1$  and  $G_{NR}$  respectively,  $\forall \sum_{j=1}^2 n_j = n$ . Assuming a subsample of size  $h_2$  with units  $y_{h2i}$ ,  $i=1,2,...,h_2$  from  $n_2$  is re-interviewed and responded  $\forall \lambda = n_2 / h_2$ ,  $(\lambda > 1)$ . Let  $x_i^*$ ,  $y_i^*$  be the measured and  $X_i^*$ ,  $Y_i^*$  actual values of X, Y respectively from  $\Omega$ , then the measurement error is given by;

$$e_{yi}^* = y_i^* - Y_i^*, \ e_{xi}^* = x_i^* - X_i^*, \ \forall \ y_i^* = Y_i^* + e_{yi}^*, \ x_i^* = X_i^* + e_{xi}^*$$
 (1.1)

where  $e_{yi}^*$  and  $e_{xi}^*$  are uncorrelated random variables with zero means and constant variances.

#### 1.2 Notations:

$$\begin{split} S_{Y}^{2} &= (N-1)^{-1} \sum_{i}^{N} (Y_{i} - \overline{Y})^{2} \text{ is population variance of } Y. \\ S_{Y(2)}^{2} &= (N_{2} - 1)^{-1} \sum_{i}^{N_{2}} (Y_{(2)i} - \overline{Y}_{2})^{2} \text{ is population variance of } Y_{2i}. \\ S_{X}^{2} &= (N-1)^{-1} \sum_{i}^{N} (X_{i} - \overline{X})^{2} \text{ is population variance of } X. \\ S_{X(2)}^{2} &= (N_{2} - 1)^{-1} \sum_{i}^{N_{2}} (X_{(2)i} - \overline{X}_{2})^{2} \text{ is population variance of } X_{2i}. \\ S_{YX} &= (N-1)^{-1} \sum_{i=1}^{N} (Y_{i} - \overline{Y})(X_{i} - \overline{X}) \text{ is population covariance of } Y \text{ and } X. \\ S_{YX(2)} &= (N_{2} - 1)^{-1} \sum_{i=1}^{N_{2}} (Y_{(2)i} - \overline{Y}_{2})(X_{(2)i} - \overline{X}_{2}) \text{ is population covariance of } Y_{2} \text{ and } X_{2}. \\ S_{U}^{2} &= (N-1)^{-1} \sum_{i=1}^{N} e_{yi}^{*2} \text{ is the population variance of } ME e_{y}^{*} \\ S_{V}^{2} &= (N-1)^{-1} \sum_{i=1}^{N} e_{xi}^{*2} \text{ is the population variance of } ME e_{x}^{*} \\ S_{U(2)}^{2} &= (N_{2} - 1)^{-1} \sum_{i=1}^{N_{2}} e_{y(2)i}^{2} \text{ is population variance of } ME e_{y(2)}^{*} \text{ from } G_{NR}. \\ S_{V(2)}^{2} &= (N_{2} - 1)^{-1} \sum_{i=1}^{N_{2}} e_{x(2)i}^{2} \text{ is population variance of } ME e_{x(2)}^{*} \text{ from } G_{NR}. \\ \end{split}$$

[9], estimator when study variable is characterized by non-response and measurement error is given as;

$$\overline{y}_{e}^{*} = n_{1} n^{-1} \overline{y}_{1(e)} + n_{2} n^{-1} \overline{y}_{h_{1}(e)}$$
(1.2)

where

$$\overline{y}_{1(e)} = n_1^{-1} \sum_{i=1}^{n_1} y_{1i}^*, \ \overline{y}_{h2(e)} = h_2^{-1} \sum_{i=1}^{h_2} y_{h2i}^*$$

$$Bias(\overline{y}_e^*) = 0 (1.3)$$

$$MSE(\overline{y}_{e}^{*}) = k_{1}(S_{Y}^{2} + S_{U}^{2}) + k_{2}(S_{Y(2)}^{2} + S_{U(2)}^{2}) = F_{0}, (say)$$
 (1.4)

Though  $Bias(\overline{y}_e^*)=0$ , however, its precision does not only depend on the sample size but adequacy of information contained in the sample. If the sample units is skewed or higher numbers of non-response is experienced, the precision of  $\overline{y}_e^*$  will be greatly affected. To overcome this, information on auxiliary variables are used.

[18], ratio estimator in the presence of non-response and measurement error can be defined as;

$$\tau_1 = \overline{y}_e^* \overline{X} / \overline{x}_e^* \tag{1.5}$$

$$Bias(\tau_1) = R^2 F_1 - \overline{X}^{-1} F_2$$
 (1.6)

$$MSE(\tau_1) = F_0 + R^2 F_1 - 2RF_2 \tag{1.7}$$

where,

$$\begin{split} \overline{x}_{e}^{*} &= n_{1} n^{-1} \overline{x}_{1(e)} + n_{2} n^{-1} \overline{x}_{h_{2}(e)} \\ F_{1} &= k_{1} (S_{X}^{2} + S_{V}^{2}) + k_{2} (S_{X(2)}^{2} + S_{V(2)}^{2}), \\ F_{2} &= k_{1} S_{YX} + k_{2} S_{YX(2)}, \\ R &= \overline{Y} / \overline{X} \end{split}$$

[19], gave product estimator as an alternative to ratio estimator when  $\rho_{YX}$  < 0. This estimator can be defined under non-response and measurement error as;

$$\tau_2 = \overline{y}_e^* \overline{x}_e^* / \overline{X} \tag{1.8}$$

$$Bias(\tau_2) = \overline{X}^{-1}F_2 \tag{1.9}$$

$$MSE$$
üüü $F_0 + R^2F_1 + RF_2$ 

[20], suggested ratio and product exponential-type estimators. These estimators when both study and auxiliary variables are characterized by non-response and measurement error are defined as;

$$\tau_3 = \overline{y}_e^* \exp\left(\frac{\overline{X} - \overline{x}_e^*}{\overline{X} + \overline{x}_e^*}\right)$$
 (1.11)

$$\tau_4 = \overline{y}_e^* \exp\left(\frac{\overline{x}_e^* - \overline{X}}{\overline{x}_e^* + \overline{X}}\right) \tag{1.12}$$

$$Bias(\tau_3) = \frac{3}{8}RX^{-1}F_1 - \frac{1}{2}\overline{X}^{-1}F_2$$
 (1.13)

$$Bias(\tau_4) = -\frac{1}{8}RX^{-1}F_1 + \frac{1}{2}\bar{X}^{-1}F_2$$
 (1.14)

$$MSE(\tau_3) = F_0 + 0.25R^2F_1 - RF_2 \tag{1.15}$$

$$MSE(\tau_4) = F_0 + 0.25R^2F_1 + RF_2 \tag{1.16}$$

[21], transformed both sample and population mean of x using known information of x,  $a_x$  and  $b_x$  in [20] estimators.  $a_x$  and  $b_x$  are either any positive numbers, coefficients of skewness, kurtosis, variation or standard deviation. The estimators obtained under non-response and measurement error are defined as;

$$\tau_{5} = \overline{y}_{e}^{*} \exp\left(\frac{\left(a_{x}\overline{X} + b_{x}\right) - \left(a_{x}\overline{x}_{e}^{*} + b_{x}\right)}{\left(a_{x}\overline{X} + b_{x}\right) + \left(a_{x}\overline{x}_{e}^{*} + b_{x}\right)}\right)$$
(1.17)

$$\tau_6 = \overline{y}_e^* \exp\left(\frac{\left(a_x \overline{x}_e^* + b_x\right) - \left(a_x \overline{X} + b_x\right)}{\left(a_x \overline{x}_e^* + b_x\right) + \left(a_x \overline{X} + b_x\right)}\right)$$
(1.18)

$$Bias(\tau_5) = \frac{3}{8}\overline{\Upsilon}\Upsilon^2 F_1 - \frac{1}{2}\Upsilon F_2$$
 (1.19)

$$Bias(\tau_6) = -\frac{1}{8}\overline{Y}\Upsilon^2F_1 + \frac{1}{2}\Upsilon F_2$$
 (1.20)

$$MSE(\tau_5) = F_0 + 0.25\overline{Y}^2\Upsilon^2F_1 - \overline{Y}\Upsilon F_2$$
 (1.21)

$$MSE(\tau_6) = F_0 + 0.25\overline{Y}^2\Upsilon^2F_1 + \overline{Y}\Upsilon F_2$$
 (1.22)

where

$$\Upsilon = a_x / (a_x \overline{X} + b_x)$$

[22], suggested dual-to [20] estimators using information on the sample yet to be drawn. The suggested estimators when both x and y are characterized by non-response and measurement error are defined as;

$$\tau_7 = \overline{y}_e^* \exp\left(\frac{\overline{x}_{te}^* - \overline{X}}{\overline{x}_{te}^* + \overline{X}}\right) \tag{1.23}$$

$$\tau_8 = \overline{y}_e^* \exp\left(\frac{\overline{X} - \overline{x}_{te}^*}{\overline{\overline{X}} + \overline{x}_{te}^*}\right)$$
 (1.24)

$$Bias(\tau_7) = \frac{3}{8}g^2 R X^{-1} F_1 - \frac{1}{2}g \overline{X}^{-1} F_2$$
 (1.25)

$$Bias(\tau_8) = -\frac{1}{8}g^2RX^{-1}F_1 + \frac{1}{2}g\overline{X}^{-1}F_2$$
 (1.26)

$$MSE(\tau_7) = F_0 + 0.25g^2R^2F_1 - gRF_2$$
 (1.27)

$$MSE(\tau_8) = F_0 + 0.25g^2R^2F_1 + gRF_2$$
 (1.28)

where, 
$$g = n/(N-n)$$
,  $\overline{x}_{t_p}^* = (1+g)\overline{x}_p^* + g\overline{X}$ 

[23], linearly combined  $\tau_3$  and  $\tau_7$  to produce new estimator of population mean. The estimator obtained under non-response and measurement error is defined as;

$$\tau_9 = \overline{y}_e^* \left( m \exp\left(\frac{\overline{X} - \overline{x}_e^*}{\overline{X} + \overline{x}_e^*}\right) + (1 - m) \exp\left(\frac{\overline{x}_{te}^* - \overline{X}}{\overline{x}_{te}^* + \overline{X}}\right) \right)$$
(1.29)

$$Bias(\tau_9) = \frac{1}{2\bar{X}}gF_2 - \frac{1}{8\bar{X}}g^2RF_1 - m\left(\frac{g-1}{2\bar{X}}F_2 + \frac{3+g^2}{8\bar{X}}RF_1\right)$$
 (1.30)

$$MSE$$
ürüüü  $F_0 - F_2^2$   $F_1$ 

 $\tau_9$  is at optimum when  $m = g/(g-1) - 2F_2/((g-1)RF_1)$ .

Estimators defined in Eq. (1.5), Eq. (1.8), Eq. (1.11), Eq. (1.12), Eq. (1.17), Eq. (1.18), Eq. (1.23), Eq. (1.24) and Eq. (1.29) though biased, produce estimates with higher precision especially when x and y are correlated when compared to Eq. (1.12). This implies that they are characterized by either over or under estimation which in turn undermined decisions based on their results.

In this paper, we have proposed three classes of estimators of population mean with higher efficiency and almost bias-free to overcome challenges of over or under estimation.

#### 2. Proposed Estimators and their Properties

Motivated by [24], three classes of almost unbiased estimators of population mean were developed as follow;

$$\mu_y^* = \sum_{j=0}^2 \omega_j \gamma_j \tag{2.1}$$

$$\Lambda_y^* = \sum_{i=0}^2 \phi_i \nu_i \tag{2.2}$$

$$\Pi_{y}^{*} = \sum_{i=0}^{2} \eta_{i} \pi_{i} \tag{2.3}$$

Where 
$$\gamma_0 = \nu_0 = \overline{y}_e^*$$
,  $\gamma_1 = \nu_1 = \overline{y}_e^* \left( \frac{a_x \mu_X + b_x}{a_x \overline{x}_e^* + b_x} \right)$ ,  $\pi_1 = \tau_5$ ,

$$\gamma_{1} = \overline{y}_{e}^{*} \left( \frac{a_{x} \overline{x}_{e}^{*} + b_{x}}{a_{x} \mu_{X} + b_{x}} \right), \nu_{2} = \pi_{2} = \tau_{6}, \sum_{j=0}^{2} \omega_{j} = \sum_{j=0}^{2} \phi_{j} = \sum_{j=0}^{2} \eta_{j} = 1.$$

#### **Remark 2.1 :** Note that $a_x \neq b_x$ and $a_x \neq 0$ .

To derive the bias and MSE of the proposed class of estimators, we define the following error terms  $\xi_0^* = \overline{y}_e^* - \overline{Y}$ ,  $\xi_1^* = \overline{x}_e^* - \overline{X}$  such that  $|\xi_i^*| \approx 0$ , i = 0, 1. The expectations of  $\xi_i^*$  up to  $O(n^{-1})$  are given as;

$$E(\xi_0^*) = E(\xi_1^*) = 0, E(\xi_0^{*2}) = F_0$$

$$E(\xi_1^{*2}) = F_1, E(\xi_0^* \xi_1^*) = F_2$$
(2.4)

#### 2.1 Bias and MSE of estimators $\mu_{\nu}^*$

Expressing Eq. (2.1) in terms of  $\xi_i^*$ , i = 0,1. We have

$$\mu_y^* = (\overline{Y} + \xi_0^*) \left( \omega_0 + \omega_1 (1 + \Upsilon \xi_1^*)^{-1} + \omega_2 (1 + \Upsilon \xi_1^*) \right)$$
 (2.5)

where  $\Upsilon = a_x / (a_x \mu_X + b_x)$ 

Simplifying Eq. (2.5) to  $O(n^{-1})$ , we have

$$\mu_{y}^{*} - \overline{Y} = \xi_{0}^{*} - \Upsilon(\omega_{2} - \omega_{3})\xi_{0}^{*}\xi_{1}^{*} - \overline{Y}\Upsilon(\omega_{2} - \omega_{3})\xi_{1}^{*} + \overline{Y}\Upsilon^{2}\omega_{2}\xi_{1}^{*2}$$
 (2.6)

Taking expectation of Eq. (2.6) and using the results of Eq. (2.4), we get  $Bias(\mu_y^*)$  up to  $O(n^{-1})$  as;

$$Bias(\mu_y^*) = \overline{Y}\omega_2\Upsilon^2F_1 - \Upsilon(\omega_2 - \omega_3)F_2$$
 (2.7)

Squaring Eq. (2.6), taking expectation and applying the results of Eq.(2.4), we get  $MSE(\mu_{\nu}^{*})$  up to  $O(n^{-1})$  as;

$$MSE(\mu_y^*) = F_0 + \overline{Y}^2 \Upsilon^2 \theta^2 F_1 - 2 \overline{Y} \Upsilon \theta F_2$$
 (2.8)

where  $\theta = \omega_2 - \omega_3$ 

 $\partial \mu_y^*/\partial \theta=0$  and solve for  $\theta$ , we obtain  $\theta=F_2/\overline{Y}\Upsilon F_1=\theta_{opt}$  and  $MSE(\mu_y^*)_{min}$  is obtained as;

$$MSE(\mu_y^*)_{\min} = F_0 - F_2^2 / F_1$$
 (2.9)

To obtain the expression for  $\omega_j$ , j=0,1,2 such that  $\mathrm{Bias}(\mu_y^*)\approx 0+O(n^{-1}),\ p=1,2,...$ , we consider expressions  $\sum_{j=0}^2\omega_j=1,\ \omega_2-\omega_3=\theta_{opt}$  which minimize  $MSE(\mu_y^*)$  and  $\sum_{j=0}^2w_jBias(\tau_j)=0$ . The expressions can be expressed in matrix form as

$$\begin{pmatrix} 1 & 1 & 1 \\ \ddot{\mathbf{u}}\ddot{\mathbf{u}}\ddot{\mathbf{u}} & - \\ 0 & B(\tau_1) & B(\tau_2) \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} 1 \\ \theta_{opt} \\ 0 \end{pmatrix}$$

solving Eq. (2.10), we get

$$\left.\begin{array}{l}
\omega_{1} = 1 + \theta_{opt} - 2\theta_{opt}^{2} \\
\omega_{2} = \theta_{opt}^{2} \\
\omega_{3} = -\theta_{opt} + \theta_{opt}^{2}
\end{array}\right} \tag{2.11}$$

#### 2.2 Bias and MSE of $\Lambda_{\nu}^{*}$

Expressing Eq. (2.2) in terms of  $\xi_{i'}^*$  i = 0, 1. We have

$$\Lambda_{y}^{*} = (\overline{Y} + \xi_{0}^{*}) \left( \phi_{0} + \phi_{1} (1 + \Upsilon \xi_{1}^{*})^{-1} + \phi_{2} \exp \left( \frac{\Upsilon}{2} \xi_{1}^{*} \left( 1 + \frac{\Upsilon}{2} \xi_{1}^{*} \right)^{-1} \right) \right)$$
(2.12)

Simplifying Eq. (2.12) to  $O(n^{-1})$ , we have

$$\Lambda_{y}^{*} - \overline{Y} = \xi_{0}^{*} - \Upsilon(\phi_{2} - \phi_{3} / 2) \xi_{0}^{*} \xi_{1}^{*} - \overline{Y} \Upsilon(\phi_{2} - \phi_{3} / 2) \xi_{1}^{*} 
+ \overline{Y} \Upsilon^{2} (\phi_{2} - \phi_{3} / 8) \xi_{1}^{*2}$$
(2.13)

Take expectation of Eq. (2.13) and substituting the results of Eq. (2.4), we get  $Bias(\Lambda_y^*)$  up to  $O(n^{-1})$  as;

$$Bias(\Lambda_{u}^{*}) = \overline{Y}(\phi_{2} - \phi_{3} / 8)\Upsilon^{2}F_{1} - \Upsilon(\phi_{2} - \phi_{3} / 2)F_{2}$$
 (2.14)

Squaring Eq. (2.13), taking expectation and applying the results of Eq.(2.4), we get  $MSE(\Lambda_{\nu}^{*})$  up to  $O(n^{-1})$  as;

$$MSE(\Lambda_{\nu}^{*}) = F_0 + \overline{Y}^2 \Upsilon^2 \vartheta^2 F_1 - 2\overline{Y} \Upsilon \vartheta F_2$$
 (2.15)

where  $\theta = \phi_2 - \phi_3 / 2$ 

 $\partial \Lambda_{yi}^* / \partial \mathcal{G} = 0$  and solve for  $\mathcal{G}$ , we obtain  $\mathcal{G} = F_2 / \overline{Y} \Upsilon F_1 = \theta_{opt}$  and  $MSE(\Lambda_y^*)_{min}$  is obtained as;

$$MSE$$
ü**tü**üü =  $F_0 - F_2^2$   $F_1$ 

To obtained the expression for  $\omega_j$ , j=0,1,2 such that  $\operatorname{Bias}(\Lambda_y^*)\approx 0$  +  $O(n^{-1})$ , p=1,2,..., we consider expressions  $\sum_{j=0}^2\phi_j=1$ ,  $\phi_2-\phi_3/2=\theta_{opt}$  which minimize  $MSE(\Lambda_{yi}^*)$  and  $\sum_{j=0}^2\phi_jBias(\upsilon_j)=0$ . The expressions can be expressed in matrix form as

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & -1/2 \\
0 & B(\tau_1) & B(\tau_2)
\end{pmatrix}
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix} = \begin{pmatrix}
1 \\
\theta_{opt} \\
0
\end{pmatrix}$$
(2.17)

Solving Eq. (2.17), we get

$$\phi_{1} = 1 + 3\theta_{opt} - 4\theta_{opt}^{2} 
\phi_{2} = -\theta_{opt} (1 - 4\theta_{opt}) / 3 
\phi_{3} = -8\theta_{opt} (1 - \theta_{opt}) / 3$$
(2.18)

#### 2.3 Bias and MSE $\Pi_{\nu}^*$

Expressing Eq. (2.3) in terms of  $\xi_i^*$ , i = 0,1. We have

$$\Pi_{y}^{*} = (\overline{Y} + \xi_{0}^{*}) \left( \eta_{0} + \eta_{1} \exp\left(-\frac{\Upsilon \xi_{1}^{*}}{2} \left(1 + \frac{\Upsilon \xi_{1}^{*}}{2}\right)^{-1}\right) + \eta_{2} \exp\left(\frac{\Upsilon \xi_{1}^{*}}{2} \left(1 + \frac{\Upsilon \xi_{1}^{*}}{2}\right)^{-1}\right) \right)$$
(2.19)

Simplifying Eq. (2.19) up to  $O(n^{-1})$ , we have

$$\Pi_{y}^{*} - \overline{Y} = \xi_{0}^{*} - \frac{\Upsilon}{2} (\eta_{2} - \eta_{3}) \xi_{0}^{*} \xi_{1}^{*} - \frac{\Upsilon}{2} \overline{Y} (\eta_{2} - \eta_{3}) \xi_{1}^{*} + \frac{3\Upsilon^{2}}{8} \overline{Y} (\eta_{2} - \eta_{3}) \xi_{1}^{*2}$$
(2.20)

Take expectation of Eq. (2.20) and using the results of Eq. (2.1), we get  $Bias(\Pi_{\nu}^*)$  up to  $O(n^{-1})$  as;

$$Bias(\Pi_y^*) = \frac{\Upsilon^2}{8} \overline{\Upsilon} (3\eta_2 - \eta_3) F_1 - \frac{\Upsilon}{2} (\eta_2 - \eta_3) F_2$$
 (2.21)

Squaring Eq. (2.20), taking expectation and applying the results of Eq. (2.1), we get  $MSE(\Pi_y^*)$  up to  $O(n^{-1})$  as;

$$MSE(\Pi_y^*) = F_0 + \frac{\Upsilon^2}{4} \overline{\Upsilon}^2 \theta^2 F_1 - \Upsilon \overline{\Upsilon} \theta F_2$$
 (2.22)

 $\partial \Pi_y^* / \partial \theta = 0$  and solve for  $\theta$ , we obtain  $\theta = 2F_2 / \overline{Y} \Upsilon F_1 = 2\theta_{opt}$  and  $MSE(\Pi_y^*)_{min}$  is obtained as;

$$MSE$$
üyüşüü =  $F_0 - F_2^2$   $F_1$ 

To obtained the expression for  $\eta_j$ , j=0,1,2 such that  $Bias(\Pi_y^*)\approx 0+O(n^{-p}),\ p=2,3,...$ , we consider expressions  $\sum_{j=0}^2\eta_j=1,\ \eta_2-\eta_3=2\theta_{opt}$  which minimize  $MSE(\Pi_y^*)$  and  $\sum_{j=0}^2\eta_jBias(\pi_j)=0$ . The expressions can be expressed in matrix form as

$$\begin{pmatrix} 1 & 1 & 1 \\ \ddot{\mathbf{u}}\ddot{\mathbf{u}}\ddot{\mathbf{u}} & - \\ 0 & B(\tau_1) & B(\tau_2) \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} 1 \\ \theta_{opt} \\ 0 \end{pmatrix}$$

Solving Eq. (2.24), we get

$$\eta_{1} = 1 + 4\theta_{opt} - 8\theta_{opt}^{2} 
\eta_{2} = -\theta_{opt}(1 - 4\theta_{opt}) 
\eta_{3} = -\theta_{opt}(3 - 4\theta_{opt})$$
(2.25)

#### 2.4 Asymptotic Optimum Estimators (AOEs) for $\mu_v^*$ , $\Lambda_v^*$ and $\Pi_v^*$

AOEs of  $\mu_y^*$ ,  $\Lambda_y^*$  and  $\Pi_y^*$  depend on the optimum value of  $\theta_{opt}$  which is a function of unknown parameters  $\overline{Y}$ ,  $F_1$ ,  $F_2$ . For practical purposes,  $\theta_{opt}$  is replaced by  $\hat{\theta}_{ont}$  defined as;

$$\hat{\theta}_{opt} = \hat{F}_2 / \overline{y}_e^* \Upsilon \hat{F}_1 \tag{2.26}$$

where, 
$$\hat{F}_1 = k_1(s_x^2 + s_v^2) + k_2(s_{x(2)}^2 + s_{v(2)}^2)$$
,  $\hat{F}_2 = k_1s_{yx} + k_2s_{yx(2)}$ , 
$$s_x^2 = (n_1 - 1)^{-1} \sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1)^2$$
,  $s_{x(2)}^2 = (h_2 - 1)^{-1} \sum_{i=1}^{h_2} (x_{2i} - \overline{x}_{h_2})^2$ , 
$$s_{v(2)}^2 = (h_2 - 1)^{-1} \sum_{i=1}^{n_1} e_{h2i}^{*2}$$
,  $s_{yx} = (n_1 - 1)^{-1} \sum_{i=1}^{n_1} (y_{1i} - \overline{y}_1)(x_{1i} - \overline{x}_1)$ , 
$$s_{yx(2)} = (h_2 - 1)^{-1} \sum_{i=1}^{h_2} (y_{(2)i} - \overline{y}_2)(x_{(2)i} - \overline{x}_2).$$

Using the results from Eq. (2.26), AOEs for  $\mu_y^*$ ,  $\Lambda_y^*$  and  $\Pi_y^*$  denoted by  $\hat{\mu}_y^*$ ,  $\hat{\Lambda}_y^*$  and  $\hat{\Pi}_y^*$  respectively are given by;

$$\hat{\mu}_{y}^{*} = \sum_{j=0}^{2} \hat{\omega}_{j} \gamma_{j} \tag{2.27}$$

$$\hat{\Lambda}_y^* = \sum_{i=0}^2 \hat{\phi_i} \nu_i \tag{2.28}$$

$$\hat{\Pi}_{y}^{*} = \sum_{j=0}^{2} \hat{\eta}_{j} \pi_{j} \tag{2.29}$$

where, 
$$\hat{\omega}_{1} = 1 + \hat{\theta}_{opt} - 2\hat{\theta}_{opt}^{2}$$
,  $\hat{\omega}_{2} = \hat{\theta}_{opt}^{2}$ ,  $\hat{\omega}_{3} = -\hat{\theta}_{opt} + \hat{\theta}_{opt}^{2}$ ,  $\hat{\phi}_{1} = 1 + 3\hat{\theta}_{opt} - 4\hat{\theta}_{opt}^{2}$ ,  $\hat{\phi}_{2} = -\hat{\theta}_{opt}$   $(1 - 4\hat{\theta}_{opt}) / 3$ ,  $\hat{\phi}_{3} = -8\hat{\theta}_{opt}(1 - \hat{\theta}_{opt}) / 3$ ,  $\hat{\eta}_{1} = 1 + 4\hat{\theta}_{opt} - 8\hat{\theta}_{opt}^{2}$ ,  $\hat{\eta}_{2} = -\hat{\theta}_{opt}(1 - 4\hat{\theta}_{opt})$ ,  $\hat{\eta}_{3} = -\hat{\theta}_{opt}(3 - 4\hat{\theta}_{opt})$ .

#### 3. Efficiency Comparisons

This section considers the theoretical comparisons of the suggested estimators with other estimators in the study. Let  $\Psi$  denotes either  $\mu_y^*$ ,  $\Lambda_y^*$  and  $\Pi_y^*$ , then

(i) 
$$MSE(\overline{y}_{e}^{*}) - MSE(\Psi) > 0 \text{ if } F_{2}^{2} / F_{1} > 0$$
 (3.1)

(ii) 
$$MSE(\tau_1) - MSE(\Psi) > 0 \text{ if } (RF_1 - F_2)^2 > 0$$
 (3.2)

(iii) 
$$MSE(\tau_2) - MSE(\Psi) > 0 \text{ if } (RF_1 + F_2)^2 > 0$$
 (3.3)

(iv) 
$$MSE(\tau_3) - MSE(\Psi) > 0$$
 if  $(0.5RF_1 - F_2)^2 > 0$  (3.4)

(v) 
$$MSE(\tau_4) - MSE(\Psi) > 0 \text{ if } (0.5RF_1 + F_2)^2 > 0$$
 (3.5)

(vi) 
$$MSE(\tau_5) - MSE(\Psi) > 0 \text{ if } (0.5\overline{Y}\Upsilon F_1 - F_2)^2 > 0$$
 (3.6)

(vii) 
$$MSE(\tau_6) - MSE(\Psi) > 0 \text{ if } (0.5\overline{Y}\Upsilon F_1 + F_2)^2 > 0$$
 (3.7)

(viii) 
$$MSE(\tau_7) - MSE(\Psi) > 0 \text{ if } (0.5gRF_1 - F_2)^2 > 0$$
 (3.8)

(xi) 
$$MSE(\tau_4) - MSE(\Psi) > 0 \text{ if } (0.5gRF_1 + F_2)^2 > 0$$
 (3.9)

#### 4. Empirical Study

To evaluate the efficiency of the suggested estimators with respect to other estimators considered in section 1.1, we use following population;

#### Population 1: (Source: [24])

$$\begin{split} N = 5000, \overline{Y} = 4.9271; \ \overline{X} = 4.9243; \ S_y^2 = 102.007; S_U = 8.8261; S_x^2 = 101.411, \\ S_V = 9.0013; \rho_{YX} = 0.995, \ N_1 = 4500; N_2 = 500; \ n = 100; n_1 = 90; n_2 = 10; \\ S_{y(2)}^2 = 99.99174; S_{x2}^2 = 99.8747; S_{U(2)} = 9.1505; S_{V(2)} = 8.756; \rho_{YX2} = 0.9949 \end{split}$$

#### Population 2: (Source: [24])

$$\begin{split} N = 5000; \overline{Y} = 1.96, \overline{X} = 1.9433; \ S_{Y}^2 = 25.441; S_{U}^2 = 6.0404, S_{X}^2 = 100.228, \\ S_{V}^2 = 6.2244, \rho_{YX} = 0.9808, N_1 = 4000; N_2 = 1000, n = 100, n_1 = 80, n_2 = 20; \\ S_{y(2)}^2 = 25.877, S_{x(2)}^2 = 25.213, S_{U(2)}^2 = 5.9383, \rho_{YX(2)} = 0.9825, S_{V(2)}^2 = 6.2722 \end{split}$$

Table 1.0 Bias and PRE of  $\bar{y}_e^{\bullet}$ ,  $\tau_i(i=1,2,...,9)$ ,  $\mu_y^{\bullet}$ ,  $\Lambda_y^{\bullet}$  and  $\Pi_y^{\bullet}$  for Population 1

| ĽS                           | Wit      | h Measu | rement Er | ror    | Without Measurement Error |        |           |         |
|------------------------------|----------|---------|-----------|--------|---------------------------|--------|-----------|---------|
| nato                         | h=2      |         | h=5       |        | h=2                       |        | h=5       |         |
| Estimators                   | Bias     | PRE     | Bias      | PRE    | Bias                      | PRE    | Bias      | PRE     |
| $\overline{y}_e^*$           | 0        | 100     | 0         | 100    | 0                         | 100    | 0         | 100     |
| $	au_1$                      | 0.989749 | 303.15  | 1.313387  | 149.0  | 0.8926702                 | 546.18 | 1.19001   | 180.50  |
| $	au_2$                      | 0.202276 | 27.292  | 0.2049019 | 30.097 | 0.2022764                 | 26.258 | 0.2049019 | 29.076  |
| $	au_3$                      | -0.01041 | 240.56  | 0.0131055 | 170.54 | -0.01780                  | 291.87 | 0.0037153 | 189.45  |
| $	au_{\scriptscriptstyle 4}$ | 0.070897 | 48.013  | 0.0639321 | 52.300 | 0.0733595                 | 46.399 | 0.0670622 | 50.749  |
| $	au_{\scriptscriptstyle 5}$ | -0.02343 | 132.78  | -0.021183 | 123.58 | -0.024227                 | 137.13 | -0.022195 | 126.58  |
| $	au_{_{6}}$                 | 0.029953 | 76.886  | 0.0294911 | 80.349 | 0.0302183                 | 75.501 | 0.0298287 | 79.129  |
| $	au_7$                      | -0.00203 | 101.72  | -0.002043 | 101.36 | -0.002029                 | 101.87 | -0.002047 | 101.48  |
| $	au_{_{8}}$                 | 0.002051 | 98.317  | 0.0020748 | 98.655 | 0.0020525                 | 98.174 | 0.0020761 | 98.5392 |
| $	au_{9}$                    | 0.002051 | 329.94  | 0.0020748 | 178.81 | 0.0020525                 | 571.23 | 0.0020761 | 209.227 |

Contd...

| $\mu_y^*$     | 2.78e-17 | 329.94 | 2.776e-17 | 178.81 | 2.776e-17 | 571.23 | 0 | 209.23 |
|---------------|----------|--------|-----------|--------|-----------|--------|---|--------|
| $\Lambda_y^*$ | 0        | 329.94 | 0         | 178.81 | 2.776e-17 | 571.23 | 0 | 209.23 |
| $\Pi_y^*$     | 0        | 329.94 | -2.78e-17 | 178.81 | 5.551e-17 | 571.23 | 0 | 209.23 |

| γo                           | With Measurement Error |        |           |        | Without Measurement Error |        |           |        |
|------------------------------|------------------------|--------|-----------|--------|---------------------------|--------|-----------|--------|
| ator                         | h=2                    |        | h=5       |        | h=2                       |        | h=5       |        |
| Estimators                   | Bias                   | PRE    | Bias      | PRE    | Bias                      | PRE    | Bias      | PRE    |
| $\overline{y}_e^*$           | 0                      | 100    | 0         | 100    | 0                         | 100    | 0         | 100    |
| $	au_1$                      | 0.8710999              | 74.283 | 1.049966  | 67.682 | 0.7962864                 | 84.786 | 0.9368699 | 74.554 |
| $	au_2$                      | 0.2541984              | 14.922 | 0.2675041 | 19.222 | 0.2541988                 | 12.823 | 0.2675046 | 16.843 |
| $	au_3$                      | 0.0882002              | 239.72 | 0.118315  | 152.96 | 0.0738863                 | 459.88 | 0.0966765 | 195.75 |
| $	au_{\scriptscriptstyle 4}$ | 0.0553327              | 32.313 | 0.0497297 | 39.743 | 0.0601042                 | 28.352 | 0.0569427 | 35.603 |
| $	au_{\scriptscriptstyle 5}$ | -0.014972              | 124.63 | -0.015081 | 115.73 | -0.015349                 | 132.62 | -0.01565  | 120.39 |
| $	au_{\scriptscriptstyle 6}$ | 0.0187643              | 80.801 | 0.0195219 | 85.702 | 0.0188904                 | 77.396 | 0.0197125 | 83.043 |
| $	au_7$                      | -0.002504              | 102.78 | -0.002625 | 101.91 | -0.002510                 | 103.46 | -0.002634 | 102.37 |
| $	au_{_{8}}$                 | 0.0025634              | 97.311 | 0.0026946 | 98.112 | 0.0025659                 | 96.699 | 0.0026976 | 97.683 |
| $	au_{9}$                    | 0.002563               | 245.55 | 0.0026946 | 158.88 | 0.00256596                | 464.81 | 0.0026976 | 200.07 |
| $\mu_y^*$                    | -1.39e-17              | 245.55 | 1.39e-17  | 158.88 | 0                         | 464.81 | 2.776e-17 | 200.07 |
| $\Lambda_y^*$                | 0                      | 245.55 | -1.39e-17 | 158.88 | 4.163e-17                 | 464.81 | 2.776e-17 | 200.07 |
| $\Pi_y^*$                    | 0                      | 245.55 | -2.78e-17 | 158.88 | 0                         | 464.81 | 4.163e-17 | 200.07 |

#### 5. Simulation Study

For the purpose of Simulation study we consider here a bivariate normal population of size N=1000 generated using R programming language. A sample of size n=100 is drawn from it for 10,000 times. The values obtained for the MSE's of estimators without any error, with measurement error, with non-response error and with both measurement and non-response error separately for positive and negative coefficient of correlation are summarized in Table 3.0.

 $Table \ 3.0$   $MSE's \ of \ estimators \ using \ simulation \ study.$ 

| Estimators                                       | Usual MSE | MSE with<br>Measurement<br>error | MSE with<br>Non-<br>response<br>error | MSE with<br>Measurement error<br>and Non-response<br>error |  |  |  |  |  |
|--------------------------------------------------|-----------|----------------------------------|---------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| $ ho_{\scriptscriptstyle YX} = 0.9$              |           |                                  |                                       |                                                            |  |  |  |  |  |
| $\overline{\mathcal{Y}}_e^*$                     | 21.42376  | 21.83953                         | 36.22803                              | 37.06995                                                   |  |  |  |  |  |
| $	au_{_1}$                                       | 6.881803  | 6.987552                         | 15.97346                              | 22.37459                                                   |  |  |  |  |  |
| $	au_2$                                          | 49.44524  | 50.67296                         | 84.76561                              | 86.04694                                                   |  |  |  |  |  |
| $	au_{_3}$                                       | 12.61101  | 12.79928                         | 21.48777                              | 22.08347                                                   |  |  |  |  |  |
| $	au_{_{4}}$                                     | 33.56017  | 34.32835                         | 56.90291                              | 57.99378                                                   |  |  |  |  |  |
| $	au_{\scriptscriptstyle 5}$                     | 16.51642  | 16.79446                         | 27.9638                               | 28.67056                                                   |  |  |  |  |  |
| $	au_{_{6}}$                                     | 27.22932  | 27.81376                         | 46.1372                               | 47.11061                                                   |  |  |  |  |  |
| $	au_{7}$                                        | 12.63707  | 12.49544                         | 21.34528                              | 21.55881                                                   |  |  |  |  |  |
| $	au_{_{8}}$                                     | 35.1606   | 36.28736                         | 59.39883                              | 60.86434                                                   |  |  |  |  |  |
| $	au_{9}$                                        | 15.11433  | 15.51804                         | 30.9213                               | 30.06441                                                   |  |  |  |  |  |
| $\mu_y^*$                                        | 5.545504  | 6.548873                         | 13.49362                              | 18.23833                                                   |  |  |  |  |  |
| $\Lambda_y^*$                                    | 5.615851  | 6.636098                         | 13.95143                              | 19.17609                                                   |  |  |  |  |  |
| $\Pi_y^*$                                        | 5.525462  | 6.523851                         | 13.36663                              | 17.96166                                                   |  |  |  |  |  |
| $ \rho_{\scriptscriptstyle \mathrm{YX}} = -0.9 $ |           |                                  |                                       |                                                            |  |  |  |  |  |
| $\overline{\mathcal{Y}}_e^*$                     | 22.30745  | 22.95567                         | 37.99039                              | 38.07024                                                   |  |  |  |  |  |
| $	au_1$                                          | 48.93643  | 50.52392                         | 87.10728                              | 89.2312                                                    |  |  |  |  |  |
| $	au_2$                                          | 8.628908  | 8.839788                         | 15.01734                              | 28.56665                                                   |  |  |  |  |  |
| $	au_{_3}$                                       | 33.71807  | 34.76356                         | 58.32556                              | 59.21192                                                   |  |  |  |  |  |
| $	au_{_4}$                                       | 14.08811  | 14.46246                         | 23.9888                               | 29.64649                                                   |  |  |  |  |  |
| $	au_{\scriptscriptstyle 5}$                     | 27.96431  | 28.80251                         | 47.83265                              | 48.27195                                                   |  |  |  |  |  |
| $	au_{_{6}}$                                     | 17.53605  | 18.0288                          | 29.84615                              | 29.67233                                                   |  |  |  |  |  |
| $	au_7$                                          | 32.16561  | 32.79569                         | 55.3751                               | 55.876                                                     |  |  |  |  |  |
| $	au_{_{8}}$                                     | 14.90672  | 15.67454                         | 25.20907                              | 27.15659                                                   |  |  |  |  |  |

Contd...

| $	au_{9}$     | 51.10579 | 51.91353 | 106.5804 | 113.9965 |
|---------------|----------|----------|----------|----------|
| $\mu_y^*$     | 5.417634 | 6.396726 | 12.81321 | 24.67648 |
| $\Lambda_y^*$ | 5.387223 | 6.35713  | 12.54251 | 24.97668 |
| $\Pi_y^*$     | 5.410442 | 6.387537 | 12.75372 | 25.39421 |

#### 6. Conclusion

From the results of Table 1.0 and Table 2.0, it is evident that the proposed classes of estimators  $\mu_y^*$ ,  $\Lambda_y^*$  and  $\Pi_y^*$  are more efficient than estimators considered in Section 1.1 whenever measurement and non-response error occur simultaneously. Also, From Table 1.0 and Table 2.0 it is seen that the proposed classes of estimators  $\Pi_y^*$ ,  $^*\mu_y^*$  are unbiased whereas  $\Lambda_y^*$  possess negligible bias and is almost unbiased. Results of Simulation study summarized in Table 3.0 also reveal the superiority of proposed classes of almost unbiased estimators over other estimators.

#### References

- [1] S. K. Srivastava (1971), A generalized estimator for the mean of a finite population using multi auxiliary information, *Journal of American Statistical Association*, Vol. 66, 404-407.
- [2] B. B Khare and S. R Srivastava (1981), A generalized regression ratio estimator for the population mean using two auxiliary variables, *The Aligarh Journal of Statistics*, Vol. 1, 43-51.
- [3] H. P Singh and M. R Espejo (2003), On linear regression and ratioproduct estimation of a finite population mean, *Journal of the Royal Statistical Society*, Series D (The Statistician), Vol. 52, 59-67.
- [4] Shalabh (1997), Ratio method of estimation in the presence of measurement errors, *Journal of the Indian Society of Agricultural Statistics*, Vol. 50, 150-155.
- [5] Manisha and Singh (2001), An estimation of population mean in the presence of measurement errors, *Journal of the Indian Society of Agricultural Statistics*, Vol. 54, 13-18.
- [6] M. Kumar, R. Singh, A. K Singh and F. Smarandache. (2011), Some ratio type estimators under measurement errors, *World Applied Science journal*, Vol. 14, 272-76.

- [7] S. Malik, R. Singh (2013), An improved class of exponential ratiotype estimator in the presence of measurement errors, *OCTOGON Mathematical Magazine*, Vol. 21, 50-58.
- [8] R. Singh, P. Mishra and S. Khare (2019), Estimation of finite population mean under measurement error, *International journal of computational and Theoretical Statistics*, Vol. 6, 64-70.
- [9] M. Hansen and W. Hurwitz (1946), The problem of non-response in sample surveys, *Journal of American Statistical Association*, Vol. 41, 517-529.
- [10] Yaqub, M., Shabbir, J., Gupta, S. N., 2017, Estimation of population mean based on dual use of auxiliary information in non response. Communications in Statistics-Theory and Methods 46, 12130-12151.
- [11] B.B Khare and S. Srivastava (1993), Estimation of population mean using auxiliary character in presence of non-response, *Nat. Acad. Sci. Lett. India*, Vol. 16, 111-114.
- [12] B.B Khare and S. Srivastava (1997), Transformed ratio type estimators for the population mean in presence of non-response, *Communications in Statistics-Theory and Methods*, Vol. 26, 1779-1791.
- [13] S. Jackmann (1999), Correcting surveys for non-response and measurement error using auxiliary information, *Electoral Studies*, Vol. 18, 7-27.
- [14] R.Singh and P. Sharma (2015), Method of estimation in presence of non-response and measurement errors simultaneously, *Journal of Modern Applied Statistical Methods*, Vol. 14,107-121.
- [15] J. Dixon (2010), Assessing non-response bias and measurement error using statistical matching, in R. Harter, ed., 'Section on Survey Research Methods-JSM, American Statistical Association, 3388-3396.
- [16] S. Kumar, S. Bhougal, N. S Nataraja and M. Viswanathaiah (2015), Estimation of population mean in the presence of Non-Response and Measurement error, *Revista Columbiana de Estsadistica*, Vol. 38, 145-161.
- [17] M. Azeem and M. Hanif (2015), On estimation of population mean in the presence of measurement error and non-response, *Pakistan journal of Statistics*, Vol. 31, 657-70.

- [18] W. G Cochran (1940), The estimation of the yields of cereal experiments by sampling for the ratio gain to total produce, *Journal of Agriculture Society*, Vol. 30, 262-275.
- [19] M. N Murthy (1964), Product method of estimation, Sankhya: *The Indian Journal of Statistics Series A*, 69-74.
- [20] S. Bahl and R. K Tuteja (1991), Ratio and Product type exponential estimator, *Journal of Information & Optimization Sciences*, Vol. 12,159-163.
- [21] R. Singh, P. Chauhan, N. Sawan and F. Smarandache (2009), Improvement in estimating the population mean using exponential estimator in simple random sampling, *Intern. Jour. Of Stat. and Econ.* (BSE), Vol. 3, 13-18.
- [22] B. Sharma and R. Tailor (2010), A new ratio-cum-dual to ratio estimator of finite population mean in Simple Random Sampling, *Global journal of Science Frontier Research*, Vol. 10, 27-31.
- [23] W. W Chanu and B. K Singh (2015), Improved Exponential Ratio cum Exponential Dual to Ratio Estimator of Finite Population Mean in Presence of Non-Response, *J. Stat. Appl. Pro*, Vol. 4, 103-111.
- [24] P. Singh, R. Singh and C, N Bouza (2018), Effect of Measurement error and nonresponse on estimation of population mean, *Revista Investigacion Operacional*, Vol. 39, 108-120.

Received July, 2019