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Abstract: This paper proposes a linear matrix inequality (LMI)-based adaptive barrier global sliding
mode control (ABGSMC) for uncertain systems with faulty actuators. The proposed approach is
derived using a novel global nonlinear sliding surface to guarantee the global dynamic property and
to ensure system stability and the occurrence of sliding in the presence of actuator faults. The optimal
coefficients of the sliding surface are determined using the LMI method. The system’s asymptotic
stability is proven using Lyapunov theory. Additionally, an adaptive barrier function is considered to
ensure the convergence of the output variables to a predefined locality of zero in a limited time, even
where external disturbances and actuator faults are present. In order to decrease the steepness of the
control action and mitigate the chattering phenomenon, the hyperbolic tangent function is employed
instead of the signum function in the sliding mode control. The proposed method is validated using
a simulation study of the Genesio’s chaotic system.

Keywords: sliding mode control; actuator fault; linear matrix inequality; adaptive control; uncertain
system

MSC: 93C40; 93D21; 94C12; 68M15; 62F35; 93D09; 93C10

1. Introduction

Modern technological systems are complex and highly interconnected. They are also
vulnerable to faults, as a fault in a single element can easily propagate throughout the
whole system. Actuator faults can drastically decrease the performance of control systems
and potentially lead to total failures and costly shutdowns. External disturbances, para-
metric uncertainties resulting from wear and tear, and changing operating conditions also
reduce the efficiency and reliability of dynamic systems and can lead to system instability.
Hence, much effort has been made in recent decades to develop systems with fault-tolerant
capabilities so as to ensure system safety, reliability, and availability [1,2]. Faults are defined
as the impermissible deviation of the system structure or the system parameters from the
nominal situation [3–5]. Faults are often classified as plant faults, sensor faults, and actuator
faults. Faults can also be distinguished based on their size and temporal behavior as abrupt
faults (step-wise), incipient faults (drift-like), and intermittent faults. Fault-tolerant controls
(FTCs) are control systems designed to maintain satisfactory system performance under
faulty conditions [6]. FTCs are typically classified as an active FTC (AFTC) and a passive
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FTC (PFTC). AFTC approaches rely on a fault detection and identification (FDI) unit to
explicitly detect and estimate faults, whereas PFTC approaches are designed to be robust
against certain faults without the need for explicit detection [7,8]. The latter are more
conservative than the AFTC, but they are less computationally expensive.

Several control techniques have been considered in the literature to design PFTC
approaches. For instance, Ref. [9] considered an LMI scheme, an H∞ approach was adopted
in [10], a sliding mode control (SMC) approach was adopted in [11,12], and an adaptive
SMC (ASMC) was adopted in [13–16]. Fuzzy logic [17,18], neural networks (NN) [19,20],
and model predictive control (MPC) [21,22] have also been considered. Among the above-
listed approaches, the SMC technique has drawn much attention due to its ability to
eliminate parametric uncertainties and mitigate the effects of external disturbances and
faults [23–28]. SMC is achieved using two main phases: the sliding phase and the reaching
phase. A sliding surface is defined so as to obtain the desired dynamics of the controlled
system in the sliding mode. Once the states reach the sliding surface, an affiliated control
law is designed to execute the sliding mode and guarantee the system’s invariance to
external disturbances and uncertainties. However, the invariance of SMC to uncertainties
is not guaranteed in the reaching phase when linear sliding surfaces are adopted [29].
Additionally, the practical implementation of SMC with linear sliding surfaces often leads
to oscillations with finite frequency and amplitude, otherwise known as the chattering
phenomenon [30]. Integral terminal sliding mode controls (ITSMC) have been proposed to
mitigate this problem and ensure the convergence of the states to the smallest vicinity of
zero at a finite time.

An integrated FD and FTC design was proposed in [31] for a reverse osmosis desalina-
tion unit. A parity space technique was considered to approximate actuator faults, and a
receding-horizon predictive control-bounded data uncertainties controller was considered
to compensate for the extant uncertainty generated by the model and observer. A nonlinear
robust FTC approach was proposed in [32,33] to mitigate wind perturbations and actua-
tor faults in a quadrotor system. Actuator faults and wind disturbances were estimated
using an adaptive time-extended observer. Tracking performance was ensured using a
continuous FTSMC approach. A radial basis function (RBF) neural network-based FTC
strategy was considered in [34] for Markovian jump systems (MJSs) subject to faults and
nonlinear dynamics. The proposed control approach was based on an adaptive backstep-
ping technique and was shown to completely mitigate for the effects of actuator faults and
nonlinearities while also guaranteeing system stability. A control allocation approach based
on adaptive sliding mode control (ASMC) was proposed in [35] for distributed-driven
electric vehicles subject to actuator faults. A state observer (SO) was considered to obtain
an estimate of the sideslip angle in the control layer, and a barrier function was adopted to
enhance the robustness of the ASMC approach. The main reason for choosing the barrier
function was to prevent undesirable effects via the use of cost functions. The closed-loop
system’s insensitivity to faults and disturbances is ensured by the sliding mode controller.
The implementation of a controller requires exact knowledge about the upper bounds of
disturbances and noise in order to limit the effects of chattering; however, this information
is often unavailable in practical applications.

This paper proposes an adaptive barrier terminal GSMC approach based on LMI and
hyperbolic tangent functions. Its main contributions are as follows:

- Using the global sliding method control based on LMI, the best and most optimal
sliding coefficient is obtained.

- A design that considers a barrier function without information about the upper bound
of perturbations and actuator faults, which makes the system track the desired path
with the least chattering possible, is proposed.

- An SMC design that relies on the hyperbolic tangent function to further reduce chattering.

The remainder of this article is organized as follows: Section 2 provides the problem
description, along with some preliminaries. Section 3 derives the proposed controller and
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discusses the stabilization analysis. The simulation results are detailed in Section 4. Finally,
some concluding remarks are given in Section 5.

2. Problem Description and Preliminaries

Assume the following system:

.
x(t) = Ax(t) + (BL)u(t) +
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where 𝐵ଶ and 𝐿ଶ are a nonsingular 𝑚 × 𝑚  matrix. 

System (1) can be re-written as: 𝑥ሶଵ(𝑡) = 𝐴ଵଵ𝑥ଵ(𝑡) + 𝐴ଵଶ𝑥ଶ(𝑡),    𝑥ሶଶ(𝑡) = 𝐴ଶଵ𝑥ଵ(𝑡) + 𝐴ଶଶ𝑥ଶ(𝑡) + (𝐵ଶ𝐿ଶ)𝑢(𝑡) + Ɗ 
(2)

Assumption 1. Pair (A, B) is totally controllable. Using this assumption for (2), the controllabil-
ity of (𝐴ଵଵ, 𝐴ଵଶ) can be obtained by the controllability of (A, B). 

Assumption 2. The parametric uncertainty and external disturbance term 𝐷௫ is bounded and is 
less than 𝜂, i.e., ‖𝐷௫‖ < 𝜂 (3)

Lemma 1. Schur Complement [36]: for the symmetric matrix 𝑀 = ቂ 𝐴 𝐵𝐵் 𝐷ቃ, where 𝐴 = 𝐴், 𝐵 =𝐶், and 𝐷 = 𝐷், the condition M < 0 is equivalent to D < 0 and 𝐴 − 𝐵𝐷ିଵ𝐵் < 0. 

3. Main Results 
For system (2), define the switching function as: 𝑠(𝑡) = 𝐺(𝑥(𝑡) − 𝑥(0)𝑒ିఉ௧) (4)

with: 𝐺 = [𝐺ଵ 𝐼] (5)

where  𝐼, 𝛽, and 𝐺ଵ  are the 𝑚 × 𝑚 identity matrix, the appropriate positive matrix, and 𝑚 × (𝑛 − 𝑚) an appropriate matrix to be designed later, respectively. When 𝑠(𝑡) = 0 is 
reached, (3) yields: 𝑥ଶ(t) = −𝐺ଵ𝑥ଵ(t) + 𝐺𝑥(0)𝑒ିఉ௧ (6)

The SMC dynamics are obtained from (2) and (4) as: 𝑥ሶଵ(𝑡) = (𝐴ଵଵ − 𝐴ଵଶ𝐺ଵ)𝑥ଵ(𝑡) + 𝐴ଵଶ𝐺𝑥(0)𝑒ିఉ௧ (7)
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= ∆Bu(t) + b f (x) + d
(1)

where x = [x1x2]
T ∈ R2 denotes the system’s state vector, f (x) is a nonlinear system

function, ∆ f and ∆g are parametric uncertainties, and d represents the external disturbances.
L is a post-fault coefficient with L = diag([l1, · · · , ln)], and li(i=1,··· ,n), 0 ≤ li ≤ 1 represent
the level of actuator effectiveness. If li = 1, the ith actuator acts faultlessly; otherwise,
the ith actuator tolerates a certain level of fault with a special case li = 0, denoting the
complete failure of the ith actuator. A and B are matrices with suitable dimensions. Without

losing generalities, we assume x(t) =
[
xT

1 (t) xT
2 (t)

]T , A =

[
A11 A12
A21 A22

]
, ∆B = [0 ∆B2]

T ,

and B =
[
0 BT

2
]T , L = [0 L2]

T .
where B2 and L2 are a nonsingular m×m matrix.

System (1) can be re-written as:

.
x1(t) = A11x1(t) + A12x2(t),.
x2(t) = A21x1(t) + A22x2(t) + (B2L2)u(t) +
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(2)

Assumption 1. Pair (A, B) is totally controllable. Using this assumption for (2), the controllability
of (A11, A12) can be obtained by the controllability of (A, B).

Assumption 2. The parametric uncertainty and external disturbance term Dx is bounded and is
less than ηk, i.e.,

‖Dx‖ < ηk (3)

Lemma 1. Schur Complement [36]: for the symmetric matrix M =

[
A B
BT D

]
, where A = AT ,

B = CT , and D = DT , the condition M < 0 is equivalent to D < 0 and A− BD−1BT < 0.

3. Main Results

For system (2), define the switching function as:

s(t) = G
(

x(t)− x(0)e−βt
)

(4)

with:
G =

[
G1 Im

]
(5)

where Im, β, and G1 are the m×m identity matrix, the appropriate positive matrix, and
m× (n−m) an appropriate matrix to be designed later, respectively. When s(t) = 0 is
reached, (3) yields:

x2(t) = −G1x1(t) + Gx(0)e−βt (6)

The SMC dynamics are obtained from (2) and (4) as:

.
x1(t) = (A11 − A12G1)x1(t) + A12Gx(0)e−βt (7)
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According to Assumption 1, the gain matrix G1 can be found such that the matrix
Λ = A11 − A12G1 holds the expected eigenvalues. Hence, there are two positive constants
a and b such that ‖eΛt‖ ≤ ae−bt. By solving (7), the following formula can be reached:

x1(t) = eΛtx1(0) +
∫ t

0
eΛ(t−τ)A12Gx(0)e−βtdτ (8)

where the following inequality for x1(t) is satisfied:

‖x1(t)‖ ≤ ae−bt‖x1(0)‖+ a‖A12G‖‖x(0)‖e−bt
∫ t

0
e(b−β)dτ

= ae−bt‖x1(0)‖+ a‖A12G‖‖x(0)‖ e−βt − e−bt

b− β

(9)

where from (9), the following relation can be reached:

lim
t→∞

x1(t) = 0 (10)

Thus, the SMC dynamics (7) are asymptotically stable.

Remark 1. Compared to the sliding surface sc(t) = Gx(t), to acquire the sliding surface from the
beginning, the sliding surface (4) forces the state tracks. As a consequence, the reaching phase is
omitted, and the system’s invariance to uncertainties and parametric alternation is achieved in the
entire system response.

For the global sliding surface, by using (3) and Remark 1, s(t) = 0 implies that:

.
sc(t) = sc(0)e−βt (11)

where the first-order differential equation is the special solution. This equation is described
as follows:

.
sc(t)− βsc(t) = 0 (12)

Then, employing (5) and (10), the global sliding state dynamics are represented
as follows: [ .

x1(t).
sc(t)

]
=

[
A11 − A12G1 A12

0 −β

]
(13)

where the characteristic equation of the dynamics (13) can be calculated as follows:

(λ + β)|λI − A12 + A12G1| = 0 (14)

where λ is the system’s eigenvalue. Hence, the dynamic system’s eigenvalues can be
positioned in the expected places by suitably developing the parameters β and G1. The
LMI technique is employed to obtain the G1 interest matrix in the following theorem.

Theorem 1. By assuming the dynamic system (7), if matrices X > 0, Y and W > 0 are of suitable
dimensions, the following LMI must be met:[

A11X− A11Y + XAT
11 −YT AT

12 X
X −W

]
< 0 (15)

then, using P = X−1 and G1 = YX−1 in (4), system (7) is asymptotically steady.

Proof. The Lyapunov function is suggested as:

v1 = xT
1 (t)Px1(t) (16)
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where P is a positive symmetric definite matrix. The differentiation of the Lyapunov
function must be obtained along the trajectories of system (7):

.
v1(x1) = xT

1 (t)P
.
x1(t) +

.
xT

1 (t)Px1(t)

= xT
1 (t){P(A11 − A12G1) + (A11 − A12G1)

T P}x1(t)

+xT
1 (t)PA12Gx(0)e−βt + (A12Gx(0)e−βt)

T
Px1(t)

(17)

Considering lim
t→∞

e−βt = 0 and assuming that the following inequality is satisfied:

P(A11 − A12G1) + (A11 − A12G1)
T P ≤ −W−1 (18)

Then, Equation (17) can be simplified as follows:

.
v1(x1) ≤ −xT

1 (t)W
−1x1(t) ≤ −λmin

(
W−1

)
‖x1(t)‖2 (19)

where λmin(0) represents the minimum eigenvalue W−1.
It can easily be shown that a sufficient condition for (17) is:

.
v1(x1) ≤ −α1v1(x1) (20)

where

α1 =
λmin

(
W−1)

λmax(P)
(21)

Since W > 0 and P > 0, it is clear that the parameter α1 is scalar positive. Assuming
X = P−1, and before and after multiplying by X in (18) offers the following results:

A11X− A12G1X + XAT
11 − XGT

1 AT
12 ≤ −XW−1X (22)

By defining Y = G1X and using the Schur supplement in (22), it can be observed
that LMI (15) is inferred. Thus, if LMI (15) is possible, the sliding state dynamics (7) are
asymptotically stable. �

Differentiating x2(t) in (4) results in:

.
x2(t) = −G1(A11x1(t) + A12x2(t))− βGx(0)e−βt (23)

If the right-hand side (2) and (23) are equal, the following equivalent control law will
be obtained:

ueq(t) = −(B2L2)
−1[(A21 + G1 A11)x1(t) + (A22 + G1 A12)x2(t) + βsc(t)e−βt

+B2L2 f (x)],
(24)

Theorem 2. Assume the indeterminate nonlinear system (2) and the equivalent control law (24).
Suppose that the gain matrix G1 is acquired from Theorem 1. Using the control rule:

u(t) = ueq(t) + uN(t) (25)

with
uN(t) = −(B2L2)

−1Q̂sgn(s), (26)

An adaptive controller based on the barrier operation is suggested. Utilizing the
proposed barrier-based ASMC technique, the external disturbance can be approximated
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more effectively, and the closed-loop system can evolve steadier. Using the barrier function,
the switching control law can be developed in (26) as follows [37,38]:

Q̂(t) =
{

Qa i f 0 < t < t
Qpsb i f t > t (27)

where t is the time that the state trajectories converge to the vicinity of the FTSM surface s.
The adaptive-tuning rule and the positive-semi-definite barrier function are given by:{ .

Qa = ρ‖s‖
Qpsb = ‖s‖

ε−‖s‖
(28)

where ε, ρ > 0. Employing the adaptation rule (26), the control gain Q̂ is raised until the
state trajectories reach the vicinity ε of the fast terminal sliding surface s at time t. Then, for
the times after t, the adaptive control gain Q̂ switches to the positive-semi-definite barrier
function, which can decrease the convergence region and maintain the system states within.
In what follows, the stability of the system is verified in two conditions: (a) 0 < t < t and
(b) t > t.

Theorem 3. Consider the disturbed nonlinear system (6). Using the adaptive control law (25) with
the equivalent controller (24) and the discontinuous controller (26) considering Q̂(t) = Qa, the
system state trajectories reach the neighborhood of the sliding surface in finite time.

Proof. Define the Lyapunov candidate function as:

v2 =
1
2
(sTs + ϑ−1

(
Qa −Q)2

)
⇒ .

v2 = sT .
s + ϑ−1(Qa −Q)

.
Qa (29)

where ϑ > 0, and Q is a positive unknown constant. The time derivative of
.
v2 is:

.
v2 = sT .

s + ϑ−1(Qa −Q)
.

Qa (30)

Substituting the time derivative of the switching function into the above equation,
we obtain:

.
v2 = sT

(
G
(

Ax(t) + B2L2u(t) + B2L2 f (x) + D + βx(0)e−βt
))

+ ϑ−1(Qa −Q)ρ‖S‖ (31)

Replacing the adaptive control law (25) in the above equation yields:

.
v2 = −sT((Qa)sign(s)− D) + ρϑ−1(Qa −Q)‖δ‖
≤ ‖s‖‖D‖ − sTQasign(s) + ρϑ−1(Qa −Q)‖δ‖
≤ ‖s‖‖D‖ −Qa‖s‖+ ρϑ−1(Qa −Q)‖δ‖

≤ ‖s‖‖D‖ −Qa‖s‖+ ρϑ−1(Qa −Q)‖δ‖+ Q‖δ‖ −Q‖δ‖
≤ −(Q− ‖D‖)‖s‖ −

(
1− ρϑ−1(Qa −Q)

)
‖s‖

(32)

where ‖D‖ < η. Because Q− ‖D‖ > 0 and ρϑ−1 < 1, Equation (32) is written as:

.
v1 ≤ −

√
2(Q− ‖D‖) ‖s‖√

2
−
√

2ϑ
(
1− ρϑ−1) (Qa−Q)√

2ϑ

≤ −min
{√

2(Q− ‖D‖),
√

2ϑ
(
1− ρϑ−1)‖δ‖}( ‖s‖√

2
+ ‖Qa−Q‖√

2ϑ

)
≤ −χv

1
2
2

(33)

�
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Theorem 4. For system (2), using the adaptive control law (25) with the equivalent controller (24)
and the discontinuous controller (26), taking into considerationQ̂ = Qpsb (Equation (27)), yields:

u = −(B2L2)
−1[(A21 + G1 A11)x1(t) + (A22 + G1 A12)x2(t) + βsc(t)e−βt

+B2L2 f (x)]− (B2L2)
−1Qpsbsgn(s),

(34)

Then, the state of the system reaches the convergence region ‖δ‖ < ε in finite time.

Proof. Define the Lyapunov function as:

v3 =
1
2
(sTs +

(
Qpsb −Qpsb(0))

2
)

(35)

Differentiating the Lyapunov function (35) with respect to time yields:

.
v3 = sT .

s +
(

Qpsb −Qpsb(0)
) .

Qpsb (36)

Substituting
.
s and Qpsb(0) = 0 into the above equation, we obtain:

.
v3 = sT

(
G
(

Ax(t) + B2L2u(t) + B2L2 f (x) + D + βx(0)e−βt
))

+ Qpsb
.

Qpsb (37)

Substituting the control law (25) into (37) gives:

.
v3 = −sT

(
Qpsbsign(s)− D

)
+ Qpsb

.
Qpsb ≤ ‖s‖‖D‖ −Qpsb‖s‖+ Qpsb

.
Qpsb

≤ −
(

Qpsb − ‖Dx‖
)
‖s‖+ Qpsb(

ε

(ε−‖s‖)2 )sign(s)
.
s

≤ −µ‖s‖ −
(

Qpsb − ‖Dx‖
)
‖s‖

≤ −
(

Qpsb − ‖D‖
)
‖s‖+ Qpsb(

ε

(ε−‖s‖)2 )sign(s)
.
s

≤ −
(

Qpsb − ‖D‖
)
‖s‖

−Qpsb(
ε

(ε−‖s‖)2 )sign(s)
((

Qpsb

)
sign(s)− D

)
≤ −

(
Qpsb − ‖D‖

)
‖s‖ − ε

(ε−‖s‖)2

(
Qpsb − ‖D‖

)
‖s‖Qpsb

(38)

where because Qpsb > ‖Dx‖ and ε

(ε−‖s‖)2 > 0, one finds:

.
v3 ≤ −

√
2
(

Qpsb − ‖D‖
)
‖s‖√

2
−

√
2ε

(ε−‖s‖)2

(
Qpsb − ‖D‖

) ‖s‖Qpsb√
2

,

≤ −
√

2
(

Qpsb − ‖D‖
)

min
{

1, ε

(ε−‖D‖)2

}
( ‖s‖√

2
+
‖s‖Qpsb√

2
) ≤ −Ωv3

1
2

(39)

where Ω =
√

2
(

Qpsb − ‖D‖
)

min
{

1, ε

(ε−‖D‖)2

}
. �

Unwanted responses can occur in the control system due to the discontinuous nature
of the sign function provided in controls (26). Therefore, the sign(.) function is substituted
by the continuous hyperbolic tangent function to modify the slope of the tanh(.) function.
In other words, the hyperbolic tangent function is used as an approximation of the discon-
tinuous sign function. The chattering phenomenon is avoided by decreasing the steepness
of the tanh(.) function. Using the continuous hyperbolic tangent function in the control law
(25) yields:

uN(t) = −(B2L2)
−1Q̂tanh(s(t)/ζ), (40)

where sgn(s(t)/ζ) ≈ tanh(s(t)/ζ) and ζ is the thickness coefficient of the boundary layer.
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Substituting Equations (24) and (26) in (25) yields the following control law:

u = −(B2L2)
−1[(A21 + G1 A11)x1(t) + (A22 + G1 A12)x2(t) + βsc(t)e−βt

+B2L2 f (x)]− (B2L2)
−1Q̂tanh(s(t)/ζ)

(41)

Theorem 5. In the following proof, this time, Q̂(t) = Qa is considered. In this part, as in the
previous theorem, the sign(.) function is replaced by the tanh(.) function.

Proof. Define the Lyapunov candidate function as:

v2 =
1
2
(sTs + ϑ−1

(
Qa −Q)2

)
⇒ .

v2 = sT .
s + ϑ−1(Qa −Q)

.
Qa

where ϑ > 0, and Q is a positive unknown constant.

The time derivative of
.
v2 is given by:

.
v2 = sT .

s + ϑ−1(Qa −Q)
.

Qa

Substituting (3) into the above equation yields:

.
v2 = sT(G

(
Ax(t) + B2L2u(t) + B2L2 f (x) + D + βx(0)e−βt

)
+ ϑ−1(Qa −Q)ρ‖S‖,

Substituting the adaptive control law in the above equation yields:

.
v2 = −sT((Qa)tanh(s(t)/ζ)− D) + ρϑ−1(Qa −Q)‖s‖
≤ ‖s‖‖D‖ − sTQatanh(s(t)/ζ) + ρϑ−1(Qa −Q)‖s‖

(42)

The following equation is obtained:

− (Qa)tanh(
s
ζ
) ≤ 0 (43)

�

Assumption 3. For the non-zero and positive values of σ1 and σ2, the following relation is established:

σ1 ≤ 1 ≤ σ2 (44)

Considering Assumption 3 and multiplying Equation (44) by u2 yields:

σ1u2 ≤ u2 ≤ σ2u2 (45)

From Equations (45) and (43), the following condition is obtained as:

σ1

[
1

σ2
1
(Qa)

2(tanh( s
ζ ))

2
]
≤ u(t)× u(t)

= − 1
σ1
(Qa)tanh( s

ζ )u(t)
(46)

Multiplying both sides of the above equation by ( s
ζ )

2 > 0 simplifies it to:

s
ζ

u(t) ≤ −(Qa)‖
s
ζ
‖ (47)
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Combining Equations (42) and (47) yields:

.
v2 ≤ ‖s‖‖D‖ −Qa‖s‖+ ρϑ−1(Qa −Q)‖δ‖

≤ ‖s‖‖D‖ −Qa‖s‖+ ρϑ−1(Qa −Q)‖δ‖+ Q‖δ‖ −Q‖δ‖
≤ −(Q− ‖D‖)‖s‖ −

(
1− ρϑ−1(Qa −Q)

)
‖s‖

(48)

where ‖D‖ < η. Because Q− ‖D‖ > 0 and ρϑ−1 < 1, Equation (32) is written as:

.
v2 ≤ −

√
2(Q− ‖D‖) ‖s‖√

2
−
√

2ϑ
(
1− ρϑ−1) (Qa−Q)√

2ϑ

≤ −min
{√

2(Q− ‖D‖),
√

2ϑ
(
1− ρϑ−1)‖δ‖}( ‖s‖√

2
+ ‖Qa−Q‖√

2ϑ

)
≤ −χv

1
2
2

(49)

Theorem 6. In the following proof, we consider Q̂(t) = Qpsb. In this part, as in the previous
theorem, the sign(.) function is replaced by the tanh(.) function.

Proof. Consider the same Lyapunov function as that in (35):

v3 =
1
2
(sTs +

(
Qpsb −Qpsb(0))

2
)

,

Now, differentiating the Lyapunov function with respect to time, we have:

.
v3 = sT .

s +
(

Qpsb −Qpsb(0)
) .

Qpsb

Substituting
.
s and Qpsb(0) = 0 into the above equation, we obtain:

.
v3 = sT(G

(
Ax(t) + B2L2u(t) + B2L2 f (x) + D + βx(0)e−βt

)
+ Qpsb

.
Qpsb

Substituting the control law (22) into (35) yields:

.
v3 = −sT

(
Qpsbtanh(s(t)/ζ)− D

)
+ Qpsb

.
Qpsb

≤ ‖s‖‖D‖ −Qpsb‖s‖+ Qpsb
.

Qpsb

≤ −
(

Qpsb − ‖Dx‖
)
‖s‖+ Qpsb(

ε

(ε−‖s‖)2 )tanh(s(t)/ζ)
.
s

≤ −µ‖s‖ −
(

Qpsb − ‖Dx‖
)
‖s‖

≤ −
(

Qpsb − ‖D‖
)
‖s‖+ Qpsb(

ε

(ε−‖s‖)2 )tanh(s(t)/ζ)
.
s

≤ −
(

Qpsb − ‖D‖
)
‖s‖ −Qpsb(

ε

(ε−‖s‖)2 )tanh(s(t)/ζ)
((

Qpsb

)
tan h(s(t)/ζ)− D

)
(50)

Consider Assumption 2, and multiplying u2 to Equation (50), we have

.
v3 ≤ −

(
Qpsb − ‖D‖

)
‖s‖ − ε

(ε− ‖s‖)2

(
Qpsb − ‖D‖

)
‖s‖Qpsb

where because Qpsb > ‖Dx‖ and ε

(ε−‖s‖)2 > 0, one finds:

.
v3 ≤ −

√
2
(

Qpsb − ‖D‖
)
‖s‖√

2
−

√
2ε

(ε−‖s‖)2

(
Qpsb − ‖D‖

) ‖s‖Qpsb√
2

,

≤ −
√

2
(

Qpsb − ‖D‖
)

min
{

1, ε

(ε−‖D‖)2

}
( ‖s‖√

2
+
‖s‖Qpsb√

2
) ≤ −Ωv3

1
2

(51)

where Ω =
√

2
(

Qpsb − ‖D‖
)

min
{

1, ε

(ε−‖D‖)2

}
. �
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4. Simulation Results

To assess the performance of the proposed approach, we consider the following Gene-
sio’s chaotic system with parametric uncertainty, external disturbance, and actuator fault: .

x1(t).
x2(t).
x3(t)

 =

 0 1 0
0 0 1
−6 −2.92 −1.2

 x1(t)
x2(t)
x3(t)

+

 0
0
1

× L2 +

 0
0

−0.1 sin(t)

u(t)

+

 0
0

x2
1(t)

+

 0.001 sin(0.005t)
0.005 cos(0.001t)
0.009 sin(0.001t)


(52)

where expressing it as Equation (2) gives:

A11 = [0], A12 = [1 0], A21 =

[
0
−6

]
, A22 =

[
0 1
−2.92 −1.2

]
, B2 =

[
1 0
0 1

]
,

The parametric uncertainty and nonlinear function are considered as follows:

∆B2 = −0.1 sin(t), f (x) =

 0
0

x2
1(t)


where L2 is the fault coefficient entered into the system input. The type of this fault is
sinusoidal, and its magnitude is 50%. This fault is applied to the system inputs at the
20th second.

For simulation purposes, we consider β = 3. Matrices P, Y, W, and G1 are obtained
using the MATLAB LMI toolbox as follows:

P = [13.3333], Y =

[
2.2066

0

]
, W = [4.8044], G1 = [29.4210; 0].

If the initial conditions are selected as follows:

x0(t) = [1− 2 5]T , (53)

The simulation results are depicted in Figures 1–3. Figure 1 shows the dynamics of the
sliding surfaces resulting from both controllers. Note the chattering behavior exhibited by
the sliding surface of the ASMC method even before the application of the fault. A sharp
increase in chattering was noticed following the fault application. In contrast, with the help
of the barrier function and hyperbolic tangent, the proposed controller was able to reduce
the amount of chattering both before and after fault occurrence.

Figure 2 displays the control effort for both approaches. As can be seen, chattering
is noticeable using the ASMC method, both before and after fault occurrence. It was
intensified after fault occurrence. The proposed approach, on the other hand, was able to
eliminate this phenomenon to a large extent.

Figure 3 shows the system state outputs. In all three states depicted in Figure 3, it is
clear that regardless of the external disturbances, actuator fault, and parametric uncertainty,
the proposed controller yields the least chattering and tracking errors. The ASMC controller
proposed in [35] was unable to eliminate this phenomenon, both pre- and post-fault, with
chattering sharply intensifying following fault occurrence.
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Figure 1. The system’s sliding surfaces in the presence of 50% sinusoidal fault.

Figure 2. Cont.
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Figure 2. The control input under 50% sinusoidal fault.

Figure 3. System states under 50% sinusoidal fault.
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5. Conclusions and Future Work

This paper proposes an adaptive barrier GSMC approach based on LMIs and hy-
perbolic tangent functions to mitigate the effects of external disturbances, parametric
uncertainties, and actuator faults. The main attributes of the proposed approach are as
follows: (1) GSMC based on LMI is used to find the optimal coefficients of the sliding
surface. (2) An adaptive barrier function is used to ensure the convergence of the output
variables independent of the high gain of the disturbances and to avoid overshooting.
(3) The traditional sign function is replaced by a hyperbolic tangent function to reduce the
chattering effects resulting from external disturbances and actuator faults. Validation of the
proposed approach using the Genesio’s chaotic system, subject to parametric uncertainties
and external disturbances, and comparison analysis with an ASMC approach confirm its
superior dynamics and tracking performance. We suggest that future work combine higher
order global sliding modes with MPC, a barrier function, and a hyperbolic tangent to
mitigate actuator faults for underactuated systems.
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